

753/754

Documenting Process Calibrator

Bedienungshandbuch

BEFRISTETE GARANTIEBESTIMMUNGEN UND HAFTUNGSBESCHRÄNKUNG

Fluke gewährleistet, dass dieses Produkt für die Dauer von drei Jahren ab dem Kaufdatum frei von Material- und Fertigungsdefekten bleibt. Diese Garantie gilt nicht für Sicherungen, Einwegbatterien oder Schäden durch Unfälle, Vernachlässigung, Missbrauch, Modifikation, Verunreinigung oder abnormale Betriebsbedingungen oder unsachgemäße Handhabung. Die Verkaufsstellen sind nicht dazu berechtigt, diese Gewährleistung im Namen von Fluke zu erweitern. Um die Garantieleistung in Anspruch zu nehmen, wenden Sie sich an das nächstgelegene Fluke-Dienstleistungszentrum, um Informationen zur Rücksendeautorisierung zu erhalten, und senden Sie das Produkt anschließend mit einer Beschreibung des Problems an dieses Dienstleistungszentrum.

DIESE GEWÄHRLEISTUNG STELLT DEN EINZIGEN UND ALLEINIGEN RECHTSANSPRUCH AUF SCHADENERSATZ DAR. ES WERDEN KEINE WEITEREN AUSDRÜCKLICHEN ODER IMPLIZIERTEN RECHTSANSPRÜCHE, Z. B. EIGNUNG FÜR EINEN BESTIMMTEN ZWECK, ERTEILT. FLUKE ÜBERNIMMT KEINE HAFTUNG FÜR SPEZIELLE, INDIREKTE, NEBEN-ODER FOLGESCHÄDEN ODER VERLUSTE, DIE AUF BELIEBIGER URSACHE ODER RECHTSTHEORIE BERUHEN. Weil einige Staaten oder Länder den Ausschluss oder die Einschränkung einer implizierten Gewährleistung sowie von Begleit- oder Folgeschäden nicht zulassen, ist diese Gewährleistungsbeschränkung möglicherweise für Sie nicht gültig.

Fluke Corporation P.O. Box 9090 Everett, WA 98206-9090 USA Fluke Europe B.V. P.O. Box 1186 5602 BD Eindhoven Niederlande

11/99

Inhaltsverzeichnis

Titel	Seite
Einführung	1
Kontaktaufnahme mit Fluke	
Sicherheitsinformationen	2
Standardausrüstung	5
Funktionen	8
Erste Schritte	10
Betriebsfunktionen	12
Ein-/Ausgangsbuchsen	12
Tasten	
Anzeige	
Riemen und Ständer	
Der Akku	21
Aufladen des Akkus	
Akkuladestatus	
Akkulebensdauer	

Akkulebensdauer schonen	24
Das Akkuladegerät	24
Anzeigesprachen	25
Anzeigenintensität	25
Datum und Zeit	25
Hintergrundbeleuchtung	27
Individualisieren des Produkts	27
Measure-Modus	28
Messungsbereiche	28
Messung elektrischer Parameter	29
Durchgangsprüfung	31
Druckmessung	31
Temperaturmessung	35
Verwendung von Thermoelementen	35
Widerstandstemperaturfühler (RTDs)	38
Messskala	
Transmitter mit linearer Ausgabe	42
	42
	43
	43
	44
Stromausgabe	44
Verwenden elektrischer Parameter als Quelle	44
4 bis 20 mA Transmittersimulation	47
Versorgung mit Schleifenstrom	49
Quellen von Druck	51
Simulieren von Thermoelementen	
Simulieren von RTDs	55
Verwenden von Temperatur als Quelle mit Hilfe einer Hart Scientific Drywell	58

Quellenskala	60
Transmitter mit linearer Ausgabe	60
Quadratwurzel-Prozessvariablen	60
Schrittweises oder gleichmäßiges Anpassen der Ausgabewerte	61
Verwendung manueller schrittweiser Anpassung	
Verwendung automatischer Schritte	61
Gleichmäßige Anpassung der Ausgabe	62
Gleichzeitiges Messen und Quellen	65
Kalibrierung von Prozessinstrumenten	
Erstellen von Testdaten (vor Kalibrierung)	68
Transmitterjustierung	
Erstellen der Testdaten (nach Kalibrierung)	74
Testkommentare	
Kalibrieren eines Differenzdruckinstruments	74
Schalterkalibrierung	75
Transmitter-Modus	
Speicheroperationen	79
Speichern von Ergebnissen	
Durchsehen des Speichers	
Protokollieren von Daten	82
Aufzeichnen des Minimal- und Maximalwerts einer Messung	85
Ausführen einer Computer-Prozedur	
Löschen des Speichers	
Der Taschenrechner	
Speichern in und Abrufen aus Registern	87
Setzen des Quellenwerts mittels Taschenrechner	
Kurzanleitungen	
Kommunikation mit einem PC	
Wartung	100

753/754Bedienungshandbuch

Akkuwechsel	100
Reinigung des Produkts	100
Daten der letzten Kalibrierung	101
Bei Problemen	101
Kalibrierung oder Reparatur im Servicezentrum	101
Kundenseitig auswechselbare Teile	101
Zubehör	103
Spezifikationen	105
Allgemeine Spezifikationen	105
Umgebungspezifikationen	105
Normen und Zulassungen	106
Ausführliche Spezifikationen	106
mV-Messung Gleichstrom	106
Gleichspannungsmessung	107
Wechselspannungsmessung	107
Gleichstrommessung	108
Widerstandsmessung	108
Kontinuitätstests	108
Frequenzmessung	109
±Gleichspannungsausgang	109
and the state of t	
+Gleichstrom simulieren (externer Schleifenstrom)	110
Widerstandserzeugung (Quellen)	110
Temperatur, Thermoelemente	112
Temperatur, Widerstandstemperaturfühler	114
Schleifenstrom	115

Tabellen

Tabelle	e Titel S	Seite	
1.	Symbole	. 4	
2.	Übersicht: Meß- und Quellenfunktionen	. 9	
3.	Ein-/Ausgangsbuchsen und Anschlüsse	. 12	
4.	Tasten	. 15	
	Elemente einer typischen Anzeige		
6.	Typische Lebensdauer von Akkus	. 22	
7.	Unterstützte Thermoelement-Typen	. 36	
8.	Unterstützte RTD-Typen	. 38	
	Gleichzeitige MEASURE/SOURCE-Funktionen ohne Stromschleife		
10.	Gleichzeitige MEASURE/SOURCE-Funktionen mit Stromschleife	. 67	
11.	Dauer – Grenzwerte	. 83	
12.	Ersatzteile	. 102	

753/754

Bedienungshandbuch

Abbildungsverzeichnis

Abbild	lung Titel	Seite	
1.	Standardausrüstung	6	
2.	Steckbrückenverbindungen		
3.	Beispiel: Messen/Quellen		
4.	Ein-/Ausgangsbuchsen und Anschlüsse		
5.	Tasten		
6.	Elemente einer typischen Anzeige	18	
7.	Verwendung des Ständers und Riemenanbringung		
8.	Entfernen des Akkus und Verwendung des Ladegeräts	23	
9.	Uhrzeit- und Datumsanzeige	26	
10.	Bearbeiten des Datumsformats	26	
11.	Individualisieren des Produkts	28	
12.	Anschlüsse beim Messen elektrischer Parameter	30	
13.	Einfaches Druckmodul und Differenzdruckmodul	32	
14.	Anschlüsse bei Druckmessung	34	
15.	Temperaturmessung mit einem Thermoelement	37	

753/754

Bedienungshandbuch

16.	Korrekte Steckbrückenverwendung	40
17.	Temperaturmessung mit einem RTD	41
18.	Elektrische Quellenverbindungen	46
19.	Anschlüsse für die Simulation eines 4 bis 20 mA-Transmitters	48
20.	Verbindungen zur Versorgung mit Schleifenstrom	50
21.	Verbindungen zum Verwenden von Druck als Quelle	53
22.	Verbindungen zum Simulieren eines Thermoelements	56
23.	Verbindungen zum Simulieren eines RTDs	57
24.	Temperatur als Quelle mit Drywell verwenden	59
25.	Rampenbildschirm	63
26.	Überprüfen des Abschaltalarmschalters	64
27.	Measure und Source – Bildschirm	
28.	Prozessinstrumentkalibrierung – Bildschirm	69
29.	Prozessinstrumentkalibrierung – Bildschirm	69
30.	Kalibrieren eines Thermoelement-Temperaturtransmitters	70
31.	Kalibrierungsparameter – Bildschirm	71
32.	Measure und Source-Bildschirm für Kalibrierung	72
33.	Fehlerzusammenfassung – Bildschirm	72
34.	Daten nach Kalibrierung – Bildschirm	74
35.	Schalter: Begriffe	75
36.	Gespeicherte Daten – Bildschirm	80
37.	Zusätzliche Dateneingabe – Bildschirm	80
38.	Alphanumerische Eingaben – Fenster	81
39.	Speicher durchsehen – Bildschirm	
40.	Parameter für Datenprotokollierung – Bildschirm	82
41.	Anfang Aufzeichnung – Bildschirm	84
42.	Min Max – Bildschirm	85
43.	Kalibrierung Grafikaufzeichnung	88
44	Messung Spannungsahfall	88

Inhalt (forts.)

45.	Überwachen der Spannung und der Frequenz einer Wechselstromleitung	89
46.	Transmitterkalibrierung Strom-zu-Druck (S/D)	90
47.	Ausgangsstrom einer Transmittermessung	91
48.	Messung Messwiderstand	
49.	Widerstand – Quelle	92
50.	Maria Cara Cara Cara Cara Cara Cara Cara	
51.	Drehzahlmesser-Untersuchung	
52.	Verbindung Analog- und HART-Drucktransmitter	
53.	Transmitterkalibrierung mV in Strom	95
54.	Strömungsmesser Wirbelablösung – Prüfung	96
55.	HART- und Analog-RTD-Transmitter – Verbindungen	
56.	Analog- und HART-Thermoelement-Transmitterverbindungen	
57.	Transmitter HART- Nur Kommunikation	

753/754

Bedienungshandbuch

Einführung

Die 753 und 754 Documenting Process Calibrators (das Produkt) sind akkubetriebene, tragbare Instrumente, mit denen elektrische und physische Parameter gemessen und als Quelle verwendet werden. Außerdem bietet der 754 grundlegende HART®-Kommunikationsfunktionen, wenn er zusammen mit HART-fähigen Sendern verwendet wird. In der 754 HART-Modus-Bedienungsanleitung finden Sie Anweisungen zur Verwendung der HART-Kommunikationsfunktion.

Mithilfe des Produkts können Prozessinstrumente kalibriert und geprüft und außerdem durchgeführte Arbeiten dokumentiert und Fehler behoben werden.

Hinweis

In allen Abbildungen in dieser Anleitung wird der 754 dargestellt.

Kontaktaufnahme mit Fluke

Eine der folgenden Telefonnummern wählen, um Fluke zu kontaktieren:

- Technischer Support USA:
 1-800-44-FLUKE (1-800-443-5853)
- Kalibrierung/Instandsetzung USA: 1-888-99-FLUKE (1-888-993-5853)
- Kanada: 1-800-36-FLUKE (1-800-363-5853)
- Europa: +31 402-675-200
- Japan: +81-3-3434-0181
- Singapur: +65-738-5655
- Weltweit: +1-425-446-5500

Oder besuchen Sie die Website von Fluke unter www.fluke.com.

Gehen Sie zur Produktregistrierung auf http://register.fluke.com.

Um die aktuellen Ergänzungen des Handbuchs anzuzeigen, zu drucken oder herunterzuladen, besuchen Sie http://us.fluke.com/usen/support/manuals.

Die neueste Testversion der Software *DPCTrack2* kann von www.fluke.com/DPCTrack heruntergeladen werden. Weitere Informationen befinden sich unter "Kommunikation mit einem PC".

Zubehör zu 753/754 ist bei www.fluke.com/process_acc erhältlich.

Sicherheitsinformationen

Die Anzeige einer **Warnung** signalisiert Bedingungen und Ereignisse, die für den Benutzer gefährlich sein könnten. Die Anzeige eines **Vorsichtshinweises** signalisiert Bedingungen und Ereignisse, die das Produkt oder das zu testende Gerät beschädigen könnten.

∧ Marnung

Um Personenschäden zu vermeiden, darf dieses Gerät nur gemäß Gebrauchsanweisung eingesetzt werden. Andernfalls kann der Schutz, den das Gerät bietet, beeinträchtigt werden.

Zur Vermeidung von Stromschlag, Brand oder Verletzungen sind folgende Hinweise zu beachten:

- Vor Inbetriebnahme des Produkts alle Sicherheitsinformationen lesen.
- Alle Anweisungen sorgfältig durchlesen.
- Für die Messung ausschließlich die korrekte Messkreiskategorie (CAT) und Spannung sowie für die Stromstärke spezifizierte Messfühler, Messleitungen und Adapter verwenden.
- Der Akku muss fest eingerastet sein, bevor das Produkt betrieben wird.

- Um falsche Messungen zu vermeiden, muss der Akku ausgetauscht werden, wenn ein niedriger Ladezustand angezeigt wird.
- Zwischen beliebigen Anschlüssen bzw. zwischen Anschlüssen und Masse niemals eine höhere Spannung als die angegebene Nennspannung anlegen.
- Den Betrieb auf die angegebene Messkreiskategorie, Spannung bzw. Nennstromstärke beschränken.
- Die Spezifikation der Messkreiskategorie (CAT) der am niedrigsten spezifizierten Komponente eines Produkts, Messfühlers oder Zubehörs nicht überschreiten.
- Zuerst eine bekannte Spannung messen, um die einwandfreie Funktion des Produkts zu prüfen.
- Keine Spannungen > 30 V AC Effektivspannung, 42 V AC Spitzenspannung oder 60 V DC berühren.
- Das Produkt nicht in der N\u00e4he von explosiven Gasen, D\u00e4mpfen oder in dunstigen oder feuchten Umgebungen verwenden.
- Das Produkt nicht ausschalten und nicht verwenden, wenn es beschädigt sein sollte.

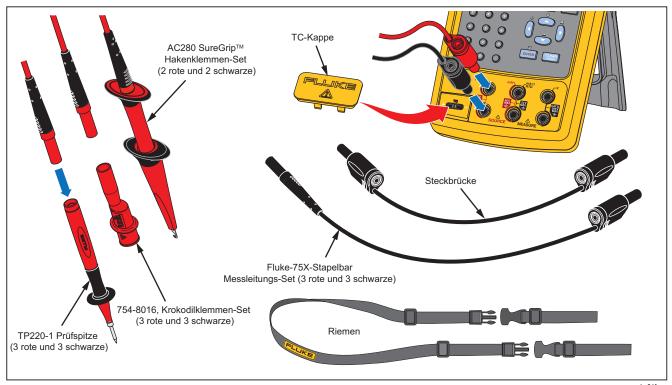
2

- Das Produkt nicht verwenden, wenn es nicht richtig funktioniert.
- Die Finger immer hinter der Griffbegrenzung der Messspitze halten.
- Alle Messfühler, Messleitungen und sämtliches Zubehör entfernen, die nicht für die Messung erforderlich sind.
- Nur Messfühler, Messleitungen und Zubehör verwenden, die dieselbe Messkreiskategorie, Spannung und Nennstromstärke wie das Produkt aufweisen.
- Die Masseleitung immer vor der spannungsführenden Leitung anschließen und die spannungsführende Leitung immer vor der Masseleitung abklemmen.
- Nur Stromsensoren, Messleitungen und Adapter verwenden, die im Lieferumfang des Produkts enthalten sind.
- Die Messfühler nicht an eine Spannungsquelle halten, wenn die Messleitungen mit Stromklemmen verbunden sind.
- Nur Kabel mit den korrekten Spannungsspezifikationen verwenden.

- Die Messleitungen nicht verwenden, wenn sie beschädigt sind. Die Messleitungen auf beschädigte Isolierung und freiliegendes Metall untersuchen oder aber wenn die Verschleißanzeige aufleuchtet. Kontinuität der Messleitungen prüfen.
- Vor Verwendung des Produkts das Gehäuse untersuchen. Nach Rissen oder herausgebrochenem Kunststoff suchen. Insbesondere auf die Isolierung um die Buchsen herum achten.

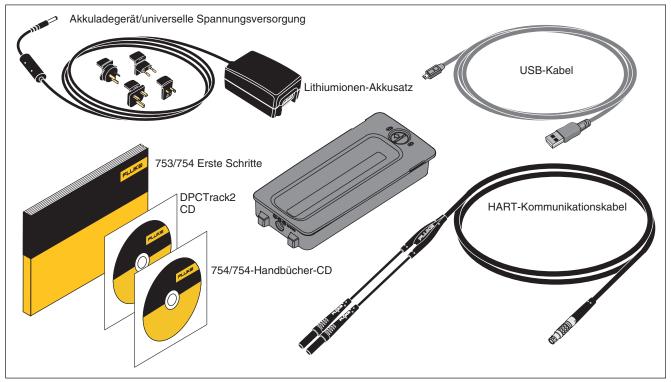
Die auf dem Produkt und in vorliegender Bedienungsanleitung verwendeten Symbole werden in Tabelle 1 erklärt.

Tabelle 1. Symbole


Symbol	Bedeutung	Symbol	Bedeutung
Ţ	Erde, Masse	\$	Gemeinsamer Eingangs-Potentialausgleichleiter (LO).
~	AC – Wechselstrom (Alternating Current)		Entspricht den maßgeblichen nordamerikanischen Standards der Sicherheitstechnik.
I III. — (-leichstrom (Litrent) I III		Übereinstimmung mit den Richtlinien der Europäischen Union.	
Gefahr. Wichtige Informationen. Siehe Handbuch.		Druck	
A	Gefährliche Spannung. Stromschlaggefahr.	<u> </u>	Dieses Produkt nicht mit dem Hausmüll entsorgen. Recycling-Informationen sind auf der Website von Fluke zu finden.
4	Anlegen bzw. Entfernen gefährlicher stromführender Leiter ist erlaubt.	N10140	Entspricht den maßgeblichen australischen Standards.
	Doppelt isoliert	TUV	Deutsche Zertifizierungsstelle.
CAT II	CAT II-Geräte sind so konzipiert, dass sie B. Fernseher, PCs, tragbare Werkzeuge u Festinstallation versorgt werden.		nungsspitzen durch stromverbrauchende Geräte (z. aushaltsgeräte) schützen, die über eine

Standardausrüstung

Unten sind die mit dem Produkt gelieferten Gegenstände aufgeführt. Sie sind außerdem in Abbildung 1 dargestellt. Falls das Produkt beschädigt ist oder bestimmte Teile fehlen, sollte der zuständige Fachhändler unverzüglich informiert werden


- Akku mit integriertem/r
 Ladegerät/Spannungsversorgung und internationalen
 Adaptern.
- In mehreren Sprachen gedrucktes 753/754-Einleitungshandbuch
- 753/754-Handbuch-CD mit mehrsprachigen Benutzerhandbüchern
- Drei Sets TP220-1-Prüfspitzen
- Drei Sets industrielle 75X-Messleitungen mit stapelbaren Enden
- Drei Paar 754-Krokodilklemmen-Sets (verlängerte Zähne)
- Zwei Sets AC280 Suregrip Hakenklemmen (rot und schwarz)

- Justierbarer Schnellauslöseriemen
- Steckbrücke für Dreileiter-RTD-Messverbindungen
- USB-Kabel: 1,8 m Typ A bis Typ Mini-B
- HART-Kommunikationskabel (754)
- Kalibrierungshandbuch (auf der Fluke-Website erhältlich)
- Muster der DPCTrack2-Anwendungssoftware
- Auf NIST zurückführbares Kalibrierungszertifikat
- TC-Eingangskappe

gkv01f.eps

Abbildung 1. Standardausrüstung

gkv02f.eps

Abbildung 1: Standardausrüstung (cont)

Funktionen

Eine Zusammenfassung der vom Produkt bereitgestellten Funktionen ist in Tabelle 2 dargestellt. Zu den weiteren Funktionen gehören:

- Analoganzeige zum einfachen Ablesen der Messwerte, wenn die Eingänge instabil sind.
- Lokalisierte Anzeige (5 Sprachen). Siehe "Anzeigesprachen".
- Thermoelement (TC) mit Ein-/Ausgangsbuchse und internem Isothermalblock mit automatischer Temperaturkompensation an der Verbindungsstelle (Referenztemperatur). Oder manuelles Aufzeichnen einer externen Temperaturreferenz.
- Speicherung von Testergebnissen.
- Datenaufzeichnung. Automatisches Aufzeichnen von bis zu 8.000 Datenpunkten.
- Eine USB-Computerschnittstelle zum Hoch- bzw. Herunterladen von Prozeduren, Listen und Ergebnissen.
- Automatisch ablaufende Kalibrierungsprozeduren für Transmitter und Grenzwertschalter; dazu wird die Fensterteilung MEASURE/SOURCE verwendet.

- Transmitter-Modus, in welchem das Produkt für die Emulation der Funktionen eines Prozessinstruments konfiguriert werden kann.
- Rechnerfunktion mit Quadratwurzelfunktion und zugänglichen Registern, die Mess- und Quellenwerte enthalten.
- Glättungsfunktion für die zuletzt gemessenen Werte. Diese Darstellung ist auf der Anzeige mit einem entsprechenden Anzeiger versehen.
- Darstellung der Meßwerte in technischer Notation, Skalenprozenten oder der quadratischen Funktion folgend, beziehungsweise gemäß benutzerdefinierten Einheiten.
- Min/Max-Funktion erfasst gemessene Extremwerte und zeigt diese an.
- Festlegen der Quellenfunktion auf technische Notation, Skalenprozente, quadratische Funktion oder kundenspezifische Einheiten.
- Manuelle oder automatische Schrittfunktion.
 Rampenfunktion am Ausgang zum Prüfen von
 Grenzwertschaltern. Die Ausschalterkennung reagiert
 bei einer 1 V-Veränderung oder bei
 Kontinuitätsveränderung (offen oder kurzgeschlossen)
 von einem Rampenschritt zum nächsten.

753/754-Kalibrierungshandbuch von der Fluke-Website herunterladen, um weitere Informationen zu Leistungsprüfungen und Kalibrieranweisungen zu erhalten.

8

Tabelle 2. Übersicht: Meß- und Quellenfunktionen

Funktion	Messen	Source
VDC V	0 V bis ±300 V	0 V bis ±15 V (10 mA max)
Gleichspannung		
VAC Hz ∏	0,27 V bis 300 V eff., 40 Hz bis 500 kHz	Als Quelle nicht verfügbar
Wechselspannung		
(NAC) Frequenz	1 Hz bis 50 kHz	0,1 V bis 30 V Spitze-zu-Spitze Sinuswelle oder 15 V Spitzen-Rechteckwelle, 0,1 Hz bis 50 kHz Sinuswelle, 0,01 Hz Rechteckwelle
□ Widerstand	$0~\Omega$ bis $10~k\Omega$	0 Ω bis 10 k Ω
Gleichstrom (DC)	0 mA bis 100 mA	0 bis 22 mA, als Quelle oder Senke verwenden
□ Durchgang	Signalton + Wort kurz zeigen Kontinuität an	Als Quelle nicht verfügbar
Tc Thermoelement	Typen E, N, J, K, T, E	B, R, S, C, L, U, BP oder XK
100 Ω Platin (3926) 100 Ω Platin (385) 120 Ω Nickel (2) 200 Ω Platin (385) 500 Ω Platin (385) 1000 Ω Platin (3916)		
☐ Druck	^[1] 29 Module von 0 bis 1 Zoll H₂O (250 kPa) bis 0 bis 10.000 psi (69.000 kPa)	
SETUP Loop Power (Schleifenstrom) 26 V		
[1] Druckerzeugung mittels externer Handpumpe oder einer anderen Quelle.		

Erste Schritte

∧ Marnung

Zur Vermeidung von Stromschlag, Brand oder Verletzungen sind folgende Hinweise zu beachten:

- Zur Strommessung die Stromversorgung unterbrechen, bevor das Produkt an den Stromkreis angeschlossen wird. Das Produkt mit dem Stromkreis in Reihe schalten.
- Kein freiliegendes Metall von Bananensteckern berühren; es können tödliche Spannungen anliegen.
- Vor dem Messen von Widerstand oder Kontinuität den Stromkreis vom Netz trennen und alle Hochspannungskondensatoren entladen.

Es folgt eine kurze Erste-Schritte-Übung:

 Nachdem das Produkt ausgepackt ist, den Akku acht Stunden lang laden (falls der Akku sich außerhalb des Produkts befindet, fünf Stunden lang laden). Weitere Informationen unter "Der Akku". Der Akku wird nur geladen, wenn das Produkt ausgeschaltet ist.

- 2. Spannungsausgang mit Spannungseingang verbinden. Dazu das linke Buchsenpaar (V Ω RTD SOURCE) mit dem rechten Buchsenpaar (V MEASURE) verbinden. Siehe Bild 2.
- @ drücken, um das Produkt einzuschalten. Gegebenenfalls die Helligkeit der Anzeige justieren. Siehe "Helligkeit der Anzeige". Das Produkt befindet sich nach dem Einschalten in der Funktion zum Messen von Gleichspannung und misst die Eingänge an den Anschlussbuchsen des V MEASURE-Paars.
- 4. Stiff drücken, um den SOURCE-Bildschirm anzuzeigen. Das Produkt misst immer noch die Gleichspannung. Der aktive Messwert befindet sich oben in der Anzeige.
- voc drücken, um Gleichspannung auszuwählen. Auf dem Tastenfeld 5 und Enten drücken, um 5.0000 V Gleichstrom als Quelle zu verwenden.
- 6. Durch Drücken von wird die Fensterteilung aktiviert, d. h. die gleichzeitige Anzeige von MEASURE-und SOURCE-Modus. Das Produkt verwendet gleichzeitig Gleichstromspannung als Quelle und misst diese. Die Messwerte werden oben in der Anzeige dargestellt und der Wert der aktiven Quelle unten, wie in Abbildung 3 zu sehen.

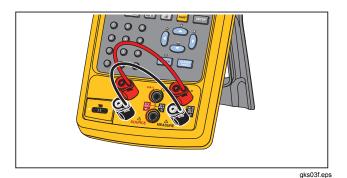


Abbildung 2. Steckbrückenverbindungen

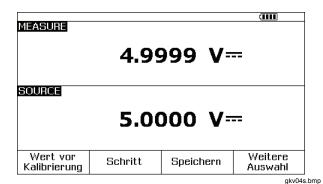
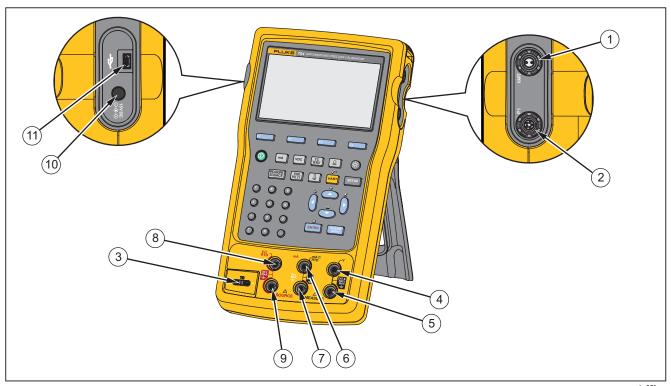


Abbildung 3. Beispiel: Messen/Quellen


Betriebsfunktionen

Ein-/Ausgangsbuchsen

In Abbildung 4 sind die Eingangs- und Ausgangsbuchsen und Anschlüsse dargestellt. Die Tabelle 3 erklärt den Gebrauch dieser Buchsen.

Tabelle 3. Ein-/Ausgangsbuchsen und Anschlüsse

Nr.	Name	Beschreibung
1	HART-Buchse (nur 754)	Verbindet das Produkt mit HART-Geräten.
2	Druckmodulanschluss	Verbindet das Produkt mit einem Druckmodul.
3	TC-Ein-/Ausgang	Buchse zum Messen oder Simulieren von Thermoelementen. Buchse verlangt Thermoelement-Ministecker (polarisiert mit flachen Polen; 7,9 mm Polmitte zu Polmitte).
4,5	⚠MEASURE V Buchsen	Eingänge zum Messen von Spannung, Frequenz oder 3- und 4-Leiter-RTDs (Resistance Temperature Detectors / Widerstandstemperaturfühler).
6,7	$\underline{\Lambda}$ SOURCE mA, MEASURE mA Ω RTD Buchsen	Buchsen für die Verwendung von Strom als Quelle bzw. zu dessen Messung, zum Messen von Widerstand und RTDs und für die Bereitstellung von Schleifenstrom.
8,9	$\underline{\wedge}$ SOURCE V Ω RTD Buchsen	Ausgangsbuchsen für die Verwendung von Spannung, Widerstand und Frequenz als Quelle und zum Simulieren von RTDs.
10	Buchse für Akkuladegerät	Buchse für Akkuladegerät/universelle Spannungsversorgung (im gesamten Handbuch als Akkuladegerät bezeichnet). Das Akkuladegerät bei Werkbankanwendungen und Vorhandensein eines Wechselstromanschlusses verwenden.
11)	USB-Anschluss (Typ 2)	Verbindet das Produkt mit einem USB-Anschluss an einem PC.

gks05f.eps

Abbildung 4. Ein-/Ausgangsbuchsen und Anschlüsse

Tasten

In Abbildung 5 sind die Tasten des Produkts dargestellt, und in Tabelle 4 wird deren Funktion erläutert. Die Softkeys sind die vier blauen Tasten (F1-F4) unterhalb der Anzeige. Die Funktionen dieser Softkeys werden durch die Bezeichner bestimmt, die während des Betriebs unmittelbar über den Softkeys angezeigt werden. Softkey-Bezeichner sowie andere Texte, die auf der Anzeige erscheinen, sind in diesem Handbuch in Fettschrift gedruckt. Zum Beispiel: Auswahl.

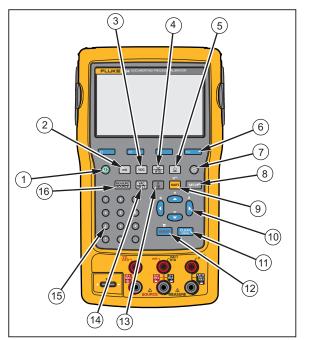


Abbildung 5. Tasten

gks06f.eps

Tabelle 4. Tasten

Nr.	Taste	Beschreibung	
1		Schaltet das Gerät ein und aus.	
2	mA	Wählt Messen oder Quellen von Strom (mA). Das Ein- und Ausschalten einer Schleife wird im Einstellmodus eingerichtet.	
3	VDC	Wählt die Gleichspannungsfunktion im MEASURE-Modus oder im SOURCE-Modus.	
4	TC RTD	Wählt Mess- oder Quellenfunktionen für TC (Thermoelemente) oder RTD (Widerstand- Temperatur-Detektoren).	
(5)	<u> </u>	Wählt Druckmessung oder Quellenfunktion.	
6	F1 F2 F3 F4	Softkeys. Führt die Funktion aus, die unmittelbar über dem Softkey auf der Anzeige angegeben ist.	
7	③	Justiert die Intensität der Hintergrundbeleuchtung (drei Stufen).	
8	SETUP	Aktiviert beziehungsweise verlässt den Einstellmodus zum Ändern von Betriebsparametern.	
9	(754) RANGE (753)	(754) Hin- und Herschalten zwischen HART-Kommunikationsmodus und Analogbetrieb. Im Taschenrechnermodus stellt diese Taste die Quadratwurzelfunktion zur Verfügung. (753) Justiert den Messbereich des Produkts.	

Tabelle 4. Tasten (Forts.)

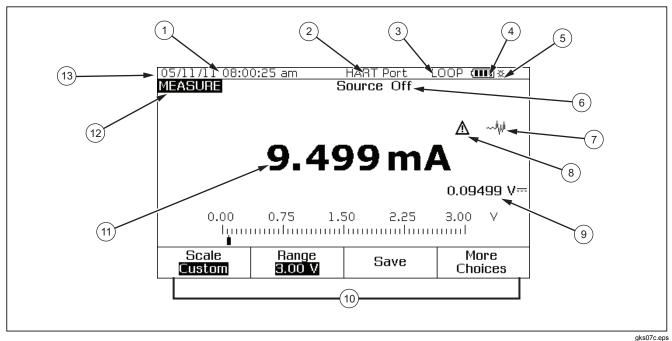
Nr.	Taste	Beschreibung		
10	♠, ♥, ﴿, ﴾			
		Auswählen aus angezeigten Listen.		
		Erhöhen oder Senken des Ausgangspegels beim schrittweisen Vorgehen.		
		Stellt im Taschenrechnermodus arithmetische Funktionen (+ - ÷ ×) zur Verfügung.		
11)	CLEAR (ZERO)	Löscht eine noch nicht abgeschlossene Eingabe oder fordert im SOURCE-Modus einen Ausgabewert an. Setzt bei Verwendung eines Druckmoduls den Anzeiger des Moduls auf Null.		
12	ENTER	Vervollständigt einen numerischen Eintrag, wenn ein Quellwert festgelegt wird bzw. bestätigt eine Wahl aus der Liste. Agiert im Taschenrechnermodus als arithmetischer Operator Gleichheitszeichen (=).		
(13)	Ω 1017)	Schaltet im MEASURE-Modus zwischen Widerstand und Kontinuität hin und her oder wählt die Widerstandsfunktion im SOURCE-Modus.		
14)	VAC Hz Jī	Schaltet im MEASURE-Modus zwischen Wechselspannungs- und Frequenzfunktionen hin und her oder wählt Frequenzausgabe im SOURCE-Modus.		
15	Numerisches Tastenfeld	Für numerische Einträge.		
(16)	MEASURE SOURCE	Hin- und Herschalten des Produkts zwischen MEASURE-, SOURCE- und MEASURE/SOURCE-Modus.		

Anzeige

Abbildung 6 und Tabelle 5 zeigen eine typische Anzeige. Es handelt sich dabei um eine Anzeige im MEASURE-Modus. Am oberen Rand der Anzeige wird **Source aus** dargestellt. In diesem Anzeigebereich wird dargestellt, was im anderen Modus (SOURCE oder MEASURE) geschieht. Die übrigen Elemente der Anzeige sind:

- Statuszeile: Enthält Datum und Uhrzeit, den jeweiligen Status der Stromschleife, des Batterieschoners und des Zeitgebers für die Hintergrundbeleuchtung. Die entsprechenden Parameter können im Einstellmodus eingerichtet werden. Außerdem werden der ausgewählte HART-Kanal (falls HART aktiviert ist; nur 754) sowie Symbole für schwachen Akku und aktivierte Hintergrundbeleuchtung angezeigt.
- Moduskennzeichner: Zeigt an, ob sich das Produkt im MEASURE- oder SOURCE-Modus befindet. Beim Arbeiten mit Fensterteilung (gleichzeitiges Anzeigen von MEASURE- und SOURCE-Modus) enthalten beide Fenster einen Moduskennzeichner.

- Messwert: Zeigt den Messwert an. Die Maßeinheit ist abhängig von der entsprechenden Einstellung (technische Notation, Skalenprozente).
- Bereichsstatus: Zeigt den momentan benutzten Bereich an und ob die automatische Bereichswahl eingeschaltet ist.
- Kennzeichner für kundenspezifische Maßeinheit:
 Signalisiert, dass die angezeigte Maßeinheit durch den Kunden/Benutzer definiert wurde. Die Originaleinheit der Mess- oder Quellenfunktion wird nicht angezeigt.
- Sekundärwert: Gibt den Wert der Mess- oder Quellenfunktion in der Originaleinheit an, wenn Skalierung oder eine kundenspezifische Maßeinheit aktiviert ist.



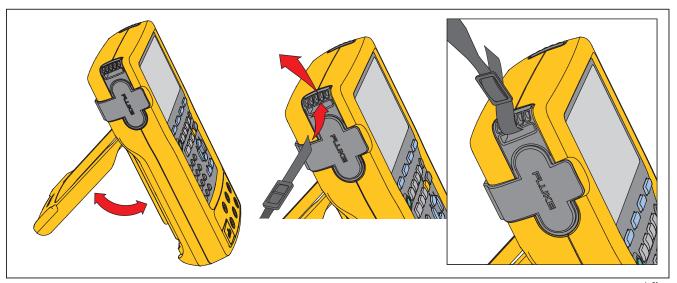

Abbildung 6. Elemente einer typischen Anzeige

Tabelle 5. Elemente einer typischen Anzeige

Nr.	Beschreibung			
1	Uhrzeit- und Datumsanzeige			
2	HART-Anzeiger			
3	Schleifenstromanzeiger			
4	Akkuanzeige			
(5)	Hintergrundbeleuchtungsanzeiger			
6	Quellenstatus			
7	Ungeglätteter (unbeständiger) Anzeiger			
8	Anzeige kundenspezifische Einheiten			
9	Sekundärwert			
10	Softkey-Beschriftungen			
11)	Gemessener Wert			
12	Modusanzeiger			
13	Statusleiste			

Riemen und Ständer

Nach Auspacken des Produkts den Trageriemen wie in Abbildung 7 gezeigt anbringen. Die Riemen können bei Bedarf justiert werden, um das Produkt an eine stabile Halterung zu hängen. In Abbildung 7 wird außerdem gezeigt, wie der Ständer geöffnet wird, um das Produkt für die Verwendung auf der Werkbank in einen optimalen Blickwinkel zu bringen.

gks8f.eps

Abbildung 7. Verwendung des Ständers und Riemenanbringung

Der Akku

∧ Vorsicht

Sicherer Betrieb und Wartung des Geräts:

- Zellen oder Akkus nicht in einem Behälter aufbewahren, in dem die Klemmen kurzgeschlossen werden können.
- Sollte der Akku ausgelaufen sein, das Produkt vor der Verwendung reparieren.
- Wenn das Produkt über längere Zeit nicht verwendet wird, müssen die Akkus entfernt werden, da sie sonst auslaufen und das Produkt beschädigen können.
- Das Akkuladegerät mit der Steckdose verbinden, bevor das Produkt verwendet wird.
- Zum Laden des Akkus ausschließlich von Fluke zugelassene Netzadapter verwenden.
- Die Zellen und Batterieblöcke sauber und trocken halten. Verschmutzte Anschlüsse mit einem trockenen, sauberen Tuch reinigen.
- Die Akkuklemmen nicht miteinander kurzschließen.

Marnung

Zur Vermeidung von Verletzungen sind folgende Hinweise zu beachten:

- Batteriezellen und Akkublöcke weder Hitze noch Feuer aussetzen. Keiner direkten Sonneneinstrahlung aussetzen.
- Akkuzellen und -blöcke nicht zerlegen oder quetschen.
- Den Akku nicht zerlegen.
- Akkus enthalten gefährliche Chemikalien, die Verbrennungen verursachen oder explodieren können. Bei Kontakt mit Chemikalien diese mit Wasser abwaschen und ärztlichen Rat suchen.

Aufladen des Akkus

Vor der ersten Verwendung des Produkts den Akku aufladen.

Aufladen des Akkus im Produkt:

- 1. Das Produkt ausschalten.
- Das Akkuladegerät mit dem Produkt verbinden und dieses ausgeschaltet lassen. Der Akku wird nur geladen, wenn das Produkt ausgeschaltet ist.

Wenn der Akku sich in dem Produkt befindet, wird er in acht Stunden vollständig geladen. Siehe Abbildung 8.

Aufladen des Akkus außerhalb des Produkts:

Bedienungshandbuch

- Produkt mit der Anzeige nach unten hinlegen.
- Die Akkusperre mit einem Flachkopfschraubendreher von (gesperrt) in (entsperrt) drehen.
- 3. Den Akku herausnehmen.
- Das Akkuladegerät mit dem Eingang verbinden. Befindet sich der Akku außerhalb des Produkts, wird er in fünf Stunden aufgeladen.

Hinweis

Optional ist ein 12-Volt-Akkuladegerät für das Auto erhältlich. Siehe "Zubehör".

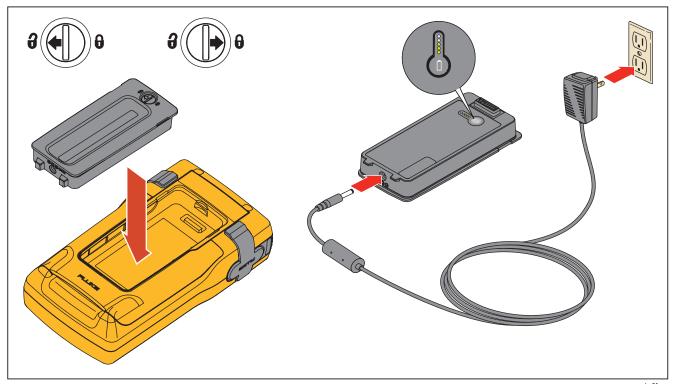
Akkuladestatus

Anhand dieser beiden Methoden lässt sich feststellen, ob der Akku aufgeladen ist:

- Durch das Balkendiagramm der Akkuanzeige auf der Anzeige.
- Durch den Akkuladeanzeiger auf dem Akku.

Der Akkuladeanzeiger ist zu sehen, wenn der Akku sich außerhalb des Produkts befindet. Wenn der Akku aus dem Produkt entfernt und vom Ladegerät getrennt wurde, die Taste unterhalb des Akkuladeanzeigers drücken. Mit beständig grün leuchtenden LEDs wird der Ladezustand des Akkus angezeigt. Der Akku ist vollständig aufgeladen, wenn alle LEDs leuchten.

Das Ladegerät mit dem Akku verbinden und die Taste unterhalb des Akkuladeanzeigers drücken. Die LEDs blinken, um den Ladezustand anzuzeigen, zeigen aber auch an, dass der Akku geladen wird. Während der Akku geladen wird, blinkt die LED und bewegt sich im Akkuladeanzeiger nach oben.


Akkulebensdauer

Das Balkendiagramm der Akkuanzeige **!---** ist oben rechts auf der Anzeige zu sehen.

In Tabelle 6 wird die typische Betriebszeit für einen neuen, vollständig aufgeladenen Akku angezeigt. Die Produktleistung wird gemäß Spezifikation garantiert, bis angezeigt wird, dass der Akku entladen ist (——). Informationen zum Ersetzen des Akkus befinden sich unter Ersetzen des Akkus".

Tabelle 6. Typische Lebensdauer von Akkus

Betriebsmodi	Hintergrundbe leuchtung schwach	Hintergrundbel euchtung stark
Ununterbrochenes Messen	13 Stunden	12 Stunden
Ununterbrochenes Messen und gleichzeitiges Nutzen der Quellenfunktion mit eingeschalteter Stromschleife	7 Stunden	6 Stunden
Betrieb mit zeitweiligen Unterbrechungen	>16 Stunden	>16 Stunden

gks9f.eps

Abbildung 8. Entfernen des Akkus und Verwendung des Ladegeräts

Akkulebensdauer schonen

Mit der optionalen Funktion Autom. Batterieschoner wird das Produkt nach einer festgelegten Leerlaufzeit ausgeschaltet. Die Standardeinstellung ist Die Einstellung wiraus . t verwendet wird. **Off**. The setting is kept after the Product power is off. Auto Battery Save operates the same when the battery charger is used.

Einschalten der Funktion Autom. Batterieschoner:

- 1. SETUP drücken.
- 2. drücken, um Aus zu markieren, das auf Autom. Batterieschoner folgt.
- 3. ENTER oder den Softkey Auswahl drücken.
- drücken, um Ein zu markieren, und dann men drücken.
- Wenn der in der Anzeige gezeigte Zeitgeber zum Ausschalten verwendet werden soll, Aktion beenden. Den Softkey Fertig drücken, um den Einstellmodus zu verlassen und Schritt 6 und alle folgenden auszulassen.
- Soll der Zeitgeber zum Ausschalten geändert werden,
 drücken, und dann den Zeitgeber rechts von
 Autom. Batterieschoner auswählen.
- 7. enter oder den Softkey **Auswahl** drücken.

- 8. Den Zeitgeber zum Ausschalten in Minuten eingeben (erlaubter Bereich: 1 bis 120 Minuten).
- 9. Den Softkey Fertig drücken.
- 10. Den Softkey **Fertig** oder **serup** drücken, um den Einstellmodus zu verlassen.

Das Akkuladegerät

∧ Vorsicht

Um Schäden am Produkt zu vermeiden, nur den mit dem Produkt gelieferten Akku verwenden: Fluke-Modell BP7240, Teilenummer 4022220.

Wenn Wechselstrom zur Verfügung steht, kann das Akkuladegerät verwendet werden, um das Produkt mit Energie zu versorgen und die Akkuleistung zu schonen. Wenn der Akku sich im Produkt befindet, wird er nur aufgeladen, wenn das Produkt ausgeschaltet ist. Beim Kalibrieren eines Geräts werden beste Ergebnisse erzielt, wenn der Strom dem Akku entnommen wird.

Optional ist ein 12-V-Autoadapter erhältlich, mit dem der Akku außerhalb des Produkts aufgeladen werden kann. Siehe "Zubehör".

Anzeigesprachen

Das Produkt kann die Informationen in fünf Sprachen anzeigen:

- Englisch
- Französisch (Europa)
- Italienisch
- Deutsch
- Spanisch

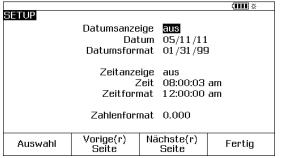
Ändern der Anzeigesprache:

- 1. SETUP drücken.
- 2. F3 zweimal drücken.
- dreimal drücken.
- 4. ENTER drücken.
- Oder ♥ drücken, um die Sprachauswahl zu markieren.
- EMTER drücken, um die Sprachauswahl zu bestätigen. Diese Sprache wird beim Einschalten standardmäßig angezeigt.
- 7. Setup drücken, um den Einstellmodus zu verlassen.

Anzeigenintensität

Es gibt zwei Möglichkeiten, die Anzeigenintensität zu erhöhen:

- Ø drücken. Bei Verwendung dieser Taste gibt es drei Intensitätsstufen.
- oder) drücken, um die Anzeigenintensität zu erhöhen. oder) drücken, um die Intensität zu verringern. Bei Verwendung dieser Tasten gibt es sechs Intensitätsstufen.


Im Taschenrechnermodus sind jedoch alle 4 Tasten mit mathematischen Funktionen belegt.

Datum und Zeit

Im normalen Betrieb können das Datum und die Uhrzeit oben in der Anzeige dargestellt werden. Das Datum und die Uhrzeit können im Einstellmodus ein- bzw. ausgeschaltet werden. Außerdem können die Formate für Datum und Uhrzeit gesteuert werden. Wenn die Anzeige für Datum und Uhrzeit nicht verwendet werden soll, müssen der Kalender und die Uhr dennoch eingestellt werden, da alle gespeicherten Ergebnisse einen Zeitstempel erhalten.

Festlegen der Anzeige von Datum und Uhrzeit:

- 1. SETUP drücken.
- Den Softkey Nächste(r) Seite drücken. Siehe Abbildung 9.

gkv38s.bmp

Abbildung 9. Uhrzeit- und Datumsanzeige

3. • und • drücken, um den Kursor zu dem gewünschten Parameter zu verschieben. Dann enter oder den Softkey **Auswahl** drücken, um eine Einstellung für diesen Parameter zu wählen.

Zum Beispiel wird die Anzeige in Abbildung 10 angezeigt, nachdem **Datumsformat** ausgewählt wurde.

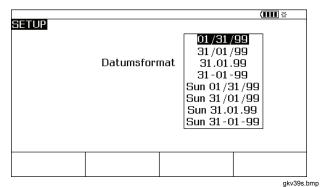


Abbildung 10. Bearbeiten des Datumsformats

- 5. Errer drücken, um das Format auszuwählen und in den Einstellmodus zurückzukehren.
- 6. Eine andere Auswahl treffen oder den Softkey **Fertig** oder serus drücken, um die Einstellungen zu speichern und den Einstellmodus zu verlassen.

Hintergrundbeleuchtung

☼ drücken, um die Intensität der Hintergrundbeleuchtung von dunkel in hell und umgekehrt zu ändern. Am oberen Rand der Anzeige wird ☼ dargestellt, wenn die Hintergrundbeleuchtung aktiv ist. Das Produkt so einstellen, dass die Hintergrundbeleuchtung automatisch ausgeschaltet wird, um den Akkuverbrauch minimal zu halten. Bei eingeschalteter Hintergrundbeleuchtung wird mit im oberen Teil der Anzeige angegeben, dass die automatische Abschaltung der Hintergrundbeleuchtung aktiviert ist

Automatisches Abblenden der Hintergrundbeleuchtung nach einer festgelegten Zeit:

- 1. SETUP drücken.
- drücken, um den Kursor in dieselbe Zeile zu verschieben
 - wie Autom. Hntgrbeleuchtg..
- 3. ENTER oder den Softkey Auswahl drücken.
- drücken, um Ein zu markieren, und dann

 men drücken.
- Wenn der in der Anzeige gezeigte Zeitgeber zum Ausschalten verwendet werden soll, Aktion beenden. Den Softkey Fertig drücken, um den Einstellmodus zu verlassen und Schritt 6 und alle folgenden auszulassen.

- 7. ENTER oder den Softkey **Auswahl** drücken.
- 8. Den Zeitgeber zum Ausschalten in Minuten eingeben (erlaubter Bereich: 1 bis 120 Minuten).
- 9. Den Softkey Fertig drücken.
- Den Softkey Fertig oder serup drücken, um den Einstellmodus zu verlassen.

Wenn die Hintergrundbeleuchtung abgeblendet wird, ertönt außerdem ein Signal.

Individualisieren des Produkts

In das Produkt können alphanumerische Kennungen eingegeben werden, die beim Einschalten und in gespeicherten Ergebnissen angezeigt werden. Installieren von Kennungen:

- 1. SETUP drücken.
- Zweimal Nächste Seite drücken.
- drücken, um den Kursor in dieselbe Zeile zu verschieben wie Anwender.
- 4. ENTER oder den Softkey **Auswahl** drücken. Der Bildschirm aus Abbildung 11 wird angezeigt.

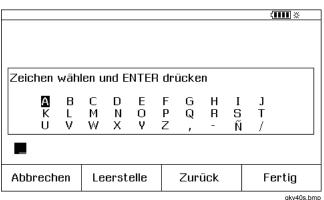


Abbildung 11. Individualisieren des Produkts

- 5. Die Anwender-Zeichenkette erscheint am unteren Rand des umrandeten Bereichs. Den Softkey Zurück drücken, um ein Zeichen zu löschen. [CLEAR] drücken, um eine ganze Zeichenfolge zu löschen. In der Anwenderzeichenfolge aufgezeichnete Informationen werden zusammen mit allen Messungen aufgezeichnet, die im Speicher abgelegt werden.
- 6. (a), (b) oder (b) drücken, um ein Zeichen auszuwählen; danach (b) drücken. Ziffern mit dem numerischen Tastenfeld aufzeichnen.
- Schritt 6 ausführen, bis die gewünschte Anwenderzeichenfolge eingegeben ist.
- 8. Den Softkey Fertig drücken.

 Den Softkey Fertig oder strug drücken, um den Einstellmodus zu verlassen.

Measure-Modus

Hinweis

Für beste Störspannungsunterdrückung und höchste Genauigkeit bei den Messungen den Akku verwenden, nicht das Ladegerät.

Der Betriebsmodus (z. B. MEASURE, SOURCE) wird oben links auf der Anzeige dargestellt. Falls das Produkt sich nicht im MEASURE-Modus befindet, SSSSE drücken, bis MEASURE angezeigt wird. Das Produkt muss sich im MEASURE-Modus befinden, damit die MEASURE-Parameter geändert werden können.

Messungsbereiche

In der Regel wechselt das Produkt automatisch in den richtigen Messbereich. Unten links auf der Anzeige wird je nach Bereichsstatus entweder "Bereich" oder "Autom. Bereichswahl" angezeigt. Schaltpunkte der automatischen Bereichswahl werden in den Spezifikationen angezeigt. Durch Drücken des Softkeys **Bereich** wird der Bereich gesperrt. Erneut drücken, um die Bereiche zu durchlaufen und den nächsthöheren Bereich festzulegen. Der automatische Bereich ist aktiv, wenn eine andere Messfunktion ausgewählt wird.

Wenn der Bereich gesperrt ist, werden Übersteuerungseingaben in der Anzeige als ----- angezeigt. Im automatischen Bereich wird mit!!!!!!

angezeigt, dass die Werte außerhalb des Bereichs liegen.

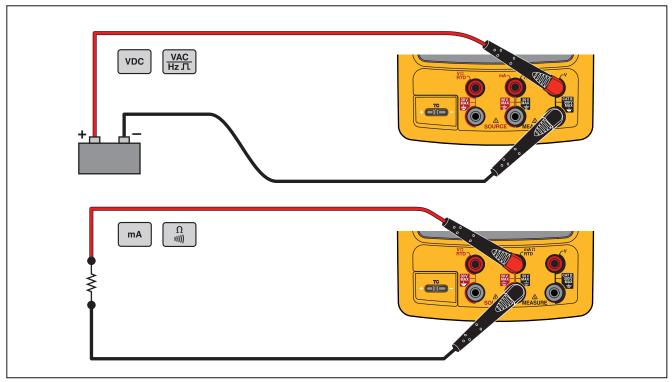
Messung elektrischer Parameter

Wenn das Produkt eingeschaltet wird, ist die Messfunktion für Gleichspannung aktiviert. Abbildung 12 zeigt die elektrischen Verbindungen für das Messen. Zum Auswählen einer elektrischen Messfunktion im SOURCE- oder MEASURE/SOURCE-Modus zuerst scheen, um in den MEASURE-Modus zu gelangen:

1.

für Strom,

für Gleichspannung, einmal


für Wechselspannung oder zweimal für Frequenz oder

für Widerstand drücken.

Hinweis

Beim Messen von Frequenz fordert das Produkt zur Auswahl eines Frequenzbereichs auf. Falls angenommen wird, dass die gemessene Frequenz unter 20 Hz liegt, © drücken, um den unteren Frequenzbereich auszuwählen, und dann ENTER drücken

 Die Messleitungen wie in Abbildung 12 gezeigt für die Messfunktion anschließen.

gks10f.eps

Abbildung 12. Anschlüsse beim Messen elektrischer Parameter

Durchgangsprüfung

Beim Durchführen einer Durchgangsprüfung ertönt der Signalgeber, und auf der Anzeige wird **Kurzschl** angezeigt, wenn der Widerstand zwischen der Ω MEASURE-Buchse und der gemeinsamen Buchse weniger als 25 Ω . **beträgt. Wenn der Widerstand größer ist als 400** angezeigt. Ω .

Durchführen einer Durchgangsprüfu, wird Unterbr :

- 1. Den zu prüfenden Stromkreis trennen.
- 2. Gegebenenfalls Source für MEASURE-Modus drücken.
- 3. Zweimal drücken, sodass **Unterbr** angezeigt wird.

Druckmessung

Fluke bietet eine breite Palette von Bereichen und Typen von Druckmodulen an. Siehe "Zubehör". Bevor ein Druckmodul eingesetzt wird, sollte dessen Bedienungsanweisung gelesen werden. Die Module unterscheiden sich darin, wie sie verwendet und auf Null gestellt werden, welche Typen von Prozessdruckmedien erlaubt sind sowie in ihren Genauigkeitsspezifikationen.

Abbildung 13 zeigt ein einfaches Druckmodul und ein Differenzdruckmodul. Differenzdruckmodule können auch wie einfache Druckmodule betrieben werden, wenn der untere Anschluss offen bleibt (Atmosphärendruck).

Zum Messen von Druck das Druckmodul, das für den zu messenden Prozessdruck geeignet ist, wie in dessen Gebrauchsanweisung beschrieben anbringen.

Messen von Druck:

Marnung

Zum Vermeiden von Personenschäden das Ventil schließen und den Druck langsam ablassen, bevor das Druckmodul mit der Druckleitung verbunden wird. So wird eine heftige Freisetzung von Druck in einem unter Druck stehenden System vermieden.

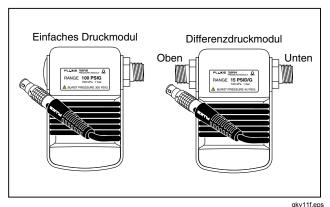


Abbildung 13. Einfaches Druckmodul und

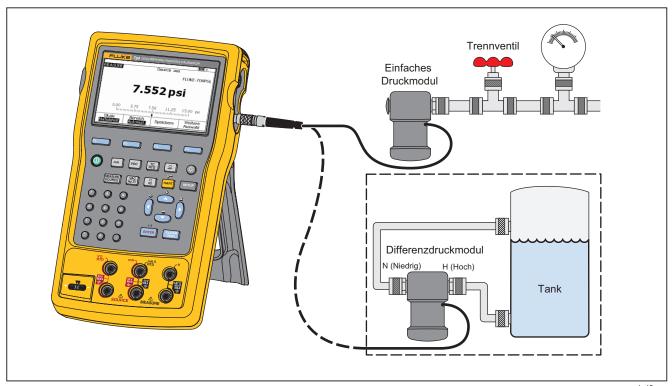
Differenzdruckmodul

∧ Vorsicht

Zur Vermeidung von Beschädigungen am Produkt oder Prüfobjekt. Folgendes beachten:

- Nie mehr als 10 ft.-lb. Drehmoment zwischen den Druckmodulanschlüssen bzw. zwischen einem Druckanschluss und dem Druckmodulgehäuse anwenden.
- Die Anschlüsse des Druckmoduls immer mit dem korrekten Drehmoment an der Druckleitung bzw. am Adapter anschließen.
- Nie Druck anlegen, der den auf dem Druckmodul angegebenen Maximaldruck übersteigt.
- Das Druckmodul ausschließlich mit den angegebenen Materialien verwenden. Informationen über die Materialverträglichkeit befinden sich auf dem Druckmodulgehäuse sowie in dessen Bedienungsanleitung.

Das Druckmodul gemäß Abbildung 14 an das Produkt anschließen. Die Gewinde am Druckmodul akzeptieren Standard-1/4-Zoll-NPT-Rohrverschraubungen. Wenn nötig, den ¼-Zoll-NPT-¼-Zoll-ISO-Adapter verwenden.


- 1. MEASURE für MEASURE-Modus drücken.
- a drücken. Das Produkt erkennt automatisch, welches Druckmodul angeschlossen ist, und stellt seinen Messbereich entsprechend ein.
- Druck auf Null stellen. Informationen dazu befinden sich in der Gebrauchsanweisung zu dem Modul. Module können unterschiedliche Prozeduren für die Nullstellung haben, je nach Modultyp.

Hinweis

Die Nullstellung MUSS vor einer Aufgabe durchgeführt werden, bei der Druck gemessen oder als Quelle verwendet wird.

- 4. Gegebenenfalls können die Druckanzeigeeinheiten in psi, mHg, inHg, inH2O, ftH2O, mH2O, bar, Pa, g/cm2 oder inH2O@60°F geändert werden. Metrische Einheiten (kPa, mmHg usw.) werden im Einstellmodus in ihren Basiseinheiten (Pa, mHg usw.) angezeigt. Ändern von Druckanzeigeeinheiten:
 - 1. S≞τυP drücken.
 - Zweimal Nächste Seite drücken.
 - ENTER drücken oder die Markierung auf Druckeinheiten verschieben und dann den Softkey Auswahl drücken.

 - 5. ENTER drücken.
 - Den Softkey Fertig drücken.

gkv12c.eps

Abbildung 14. Anschlüsse bei Druckmessung

Temperaturmessung

Verwendung von Thermoelementen

Das Produkt unterstützt dreizehn standardmäßige Thermoelemente, die jeweils mit Buchstaben gekennzeichnet sind: E, N, J, K, T, B, R, S, C, L, U, XK oder BP. Tabelle 7 bietet eine Übersicht über die Messbereiche und Eigenschaften der unterstützten Thermoelemente.

Messen von Temperatur mit einem Thermoelement:

 Die Thermoelementleiter mit dem passenden Ministecker und dann mit dem TC-Ein-/Ausgang am Produkt verbinden. Siehe Abbildung 15.

∧ Vorsicht

Um Schäden am Produkt zu vermeiden, nicht versuchen, einen Ministecker in die falsche Buchse zu zwingen. Einer der beiden Steckerstifte ist breiter als der andere.

Hinweis

Wenn das Produkt und der Thermoelementstecker unterschiedliche Temperaturen aufweisen, nach dem Einstecken des Ministeckers in die TC-E/A-Buchse eine Minute oder länger warten, so dass sich die Steckertemperatur stabilisieren kann.

- 2. Gegebenenfalls source für MEASURE-Modus drücken.
- 3. ∰ drücken.
- 4. TC auswählen.

- 5. Die Anzeige fordert zur Auswahl des Thermoelementtyps auf.
- Gegebenenfalls wie folgt zwischen den Temperatureinheiten °C, °F, °R und °K wechseln:
 - 1. SETUP drücken.
 - Zweimal den Softkey Nächste Seite drücken.
 - und drücken, um den Kursor zu dem gewünschten Parameter zu verschieben.
 - enten oder den Softkey Auswahl drücken, um einen Wert für den Parameter auszuwählen.
 - oder drücken, um den Kursor zu der gewünschten Einstellung zu verschieben.
 - 6. ENTER drücken, um zur Anzeige SETUP zurückzukehren.
 - 7. Den Softkey **Fertig** oder **sam** drücken, um den Einstellmodus zu verlassen.
- Im Einstellmodus ggf. zwischen den Skalentypen ITS-90 (International Temperature Scale – 90) oder IPTS-68 (International Practical Temperature Scale – 68) wählen. Die Prozedur entspricht den oben stehenden Schritten 1 bis 7.

Tabelle 7. Unterstützte Thermoelement-Typen

_	Plusleiter	Plusleiter Plusleiter (H)Farbe		Minusleiter	Spezifizierter Bereich
Type	Material	ANSI ^[1]	IEC ^[2]	Material	(°C)
E	Chromel	Lila	Violett	Konstantan	-250 bis 1000
N	Ni-Cr-Si	Orange	Rosa	Ni-Si-Mg	-200 bis 1300
J	Eisen	Weiß	Schwar z	Konstantan	-210 bis 1200
K	Chromel	Gelb	Grün	Alumel	-270 bis 1372
Т	Kupfer	Blau	Braun	Konstantan	-250 bis 400
В	Platin (30 % Rhodium)	Grau		Platin (6 % Rhodium)	600 bis 1820
R	Platin (13 % Rhodium)	Schwarz	Orange	Platin	-20 bis 1767
S	Platin (10 % Rhodium)	Schwarz	Orange	Platin	-20 bis 1767
C [3]	Wolfram (5 % Rhenium)	Weiß		Wolfram (26 % Rhenium)	0 bis 2316
L (DIN J)	Eisen			Konstantan	-200 bis 900
U (DIN T)	Kupfer			Konstantan	-200 bis 600
		GOST			
BP	95 % W + 5 % Re	Rot oder Rosa		80 % W + 20 % Re	0 bis 2500
XK	90,5 % Ni = 9,5 % Cr	Violett ode	r Schwarz	56 % Cu + 44 % Ni	-200 bis 800

^[1] ANSI-Gerät (American National Standards Institute), Minusleiter (L) immer rot.

^[2] IEC-Gerät (International Electrotechnical Commission), Minusleiter (L) immer weiß.

^[3] Dies ist keine ANSI-Bezeichnung. Die Bezeichnung stammt von der Hoskins Engineering Company.

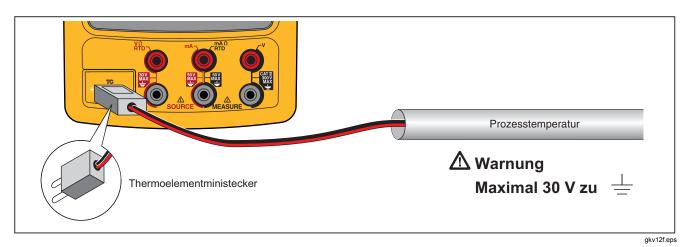


Abbildung 15. Temperaturmessung mit einem Thermoelement

37

Widerstandstemperaturfühler (RTDs)

Das Produkt akzeptiert die in Tabelle 8 gezeigten RTD-Typen. RTDs sind durch ihren Widerstand bei 0 °C (32 °F) charakterisiert. Dieser Widerstand beim sogenannten "Frost-" oder "Eispunkt" wird mit R_0 bezeichnet. Der am häufigsten vorkommende Wert für R_0 ist 100 Ω . Viele RTDs werden in einer Drei-Klemmen-Konfiguration geliefert. Das Produkt akzeptiert RTD-Messeingänge von Verbindungen mit zwei, drei oder vier Leitern. Siehe Abbildung 17. Eine 4-Leiter-Konfiguration bietet die höchste und eine 2-Leiter-Konfiguration die geringste Messgenauigkeit.

Tabelle 8. Unterstützte RTD-Typen

RTD-Typ	Frostpunkt (R₀)	Material	α	Bereich (°C)	
Pt100 (3926)	100 Ω	Platin	0,003926 Ω/Ω/°C	-200 bis 630	
Pt100 (385) [1]	100 Ω	Platin	0,00385 Ω/Ω/°C	-200 bis 800	
Ni120 (672)	120 Ω	Nickel	0,00672 Ω/Ω/°C	-80 bis 260	
Pt200 (385)	200 Ω	Platin	0,00385 Ω/Ω/°C	-200 bis 630	
Pt500 (385)	500 Ω	Platin	0,00385 Ω/Ω/°C	-200 bis 630	
Pt1000 (385)	1000 Ω	Platin	0,00385 Ω/Ω/°C	-200 bis 630	
Cu10 (427)	$9.035~\Omega^{[2]}$	Kupfer	0,00427 Ω/Ω/°C	-100 bis 260	
Pt100 (3916)	100 Ω	Platin	0,003916 Ω/Ω/°C	-200 bis 630	

^[1] Per IEC 751-Standard

^{[2] 10} Ω bei 25 °C

Messen von Temperatur, wenn ein RTD-Eingang verwendet wird:

- 1. Gegebenenfalls Für MEASURE-Modus drücken.
- 2. R drücken.

- 5. ENTER drücken.
- RTD-Messanschluss an die Eingangsbuchsen anschließen. Siehe dazu Abbildung 14. Falls 3-Leiter-Verbindungen eingesetzt werden, sollte das mitgelieferte Überbrückungsstück verwendet werden, um die beiden unteren Anschlussbuchsen von mA Ω RTD MEASURE und V MEASURE zu verbinden
- 8. ENTER drücken.

∧ Vorsicht

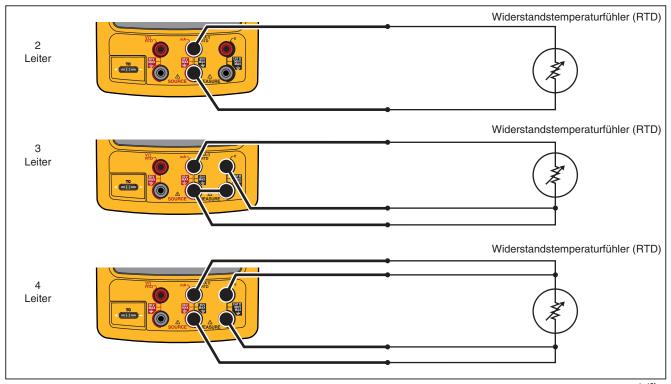

Um Schäden am Produkt zu vermeiden, nicht versuchen, einen Dual-Bananenstecker in horizontaler Ausrichtung in zwei beliebige Buchsen zu zwingen. Falls die horizontale Brücke beim Messen mit RTD notwendig ist, so ist die Benutzung der mitgelieferten Überbrückungsstücke vorgesehen. Falls die horizontale Brücke beim Messen mit RTD notwendig ist, so ist die Benutzung der mitgelieferten Überbrückungsstücke vorgesehen. Ein Dual-Bananenstecker kann in vertikaler Ausrichtung verwendet werden. Siehe Abbildung 16.

Abbildung 16. Korrekte Steckbrückenverwendung

- Gegebenenfalls im Setup zwischen den Temperatureinheiten °C, °F, K und °R wechseln:
 - 1. SETUP drücken.
 - 2. Zweimal den Softkey **Nächste Seite** drücken.

 - EMTER oder den Softkey Auswahl drücken, um einen Wert für den Parameter auszuwählen.
 - oder T drücken, um den Kursor zu der gewünschten Einstellung zu verschieben.
 - 6. ENTER drücken, um zur Anzeige SETUP zurückzukehren.
 - 7. Den Softkey **Fertig** oder **seru** drücken, um den Einstellmodus zu verlassen.
- Im Einstellmodus ggf. zwischen den Skalentypen ITS-90 (International Temperature Scale – 90) oder IPTS-68 (International Practical Temperature Scale – 68) wählen. Die Prozedur entspricht den oben stehenden Schritten 1 bis 7.

gkv15f.eps

Abbildung 17. Temperaturmessung mit einem RTD

Messskala

Mit dieser Funktion werden Messungen in Übereinstimmung mit der Rückmeldung eines geeigneten Prozessinstruments skaliert. Messen in Skalenprozenten eignet sich für Transmitter mit linearer oder auf Quadratwurzelfunktionbasierender Ausgabe, wie beispielsweise ein Differenzdrucktransmitter, der Fließgeschwindigkeit mißt.

Transmitter mit linearer Ausgabe

- 1. Gegebenenfalls für MEASURE-Modus drücken.
- Eine Messfunktion (MA), (VOC), (MAC), (MAC), (MAC)
 wählen, wie bereits beschrieben.
- 3. Den Softkey Skale drücken.
- 4. % aus der Liste auswählen.
- Das numerische Tastenfeld zur Eingabe des 0 %-Werts der Skala (0 % Punkt) verwenden.
- 6. ENTER drücken.
- Das numerische Tastenfeld zur Eingabe des 100 %-Werts der Skala (100 % Punkt) verwenden.
- 8. ENTER drücken.
- 9. Den Softkey Fertig drücken.

Skalenprozente bleiben aktiv, bis zu einer anderen Messfunktion gewechselt oder der Softkey **Skale** gedrückt und ein anderer Skalamodus ausgewählt wird.

Quadratische Funktion

Wenn Sie beim Skalieren √ auswählen, berechnet das Produkt die Quadratwurzel der Eingabe und zeigt den Messwert in Prozent an. Wenn das Produkt z. B. mit dem Ausgang eines Delta-Drucktransmitters verbunden ist, steht die Anzeige des Produkts im Verhältnis zur Fließrate.

- 1. Gegebenenfalls Für MEASURE-Modus drücken.
- 3. Den Softkey Skale drücken.
- 4. √ aus der Liste auswählen.
- Das numerische Tastenfeld zur Eingabe des 0 %-Werts der Skala (0 % Punkt) verwenden.
- 6. ENTER drücken.
- Das numerische Tastenfeld zur Eingabe des 100 %-Werts der Skala (100 % Punkt) verwenden.
- 8. Den Softkey Fertig drücken.

Quadratwurzel der Skalenprozente bleibt aktiv, bis zu einer anderen Messfunktion gewechselt oder der Softkey **Skale** gedrückt und ein anderer Skalamodus ausgewählt wird.

Messen von kundenspezifischen Einheiten oder Verwenden als Quelle

∧ M Warnung

Zur Vermeidung von Stromschlägen bei der Verwendung von kundenspezifischen Einheiten immer den rechts unterhalb der Hauptanzeige angezeigten Sekundärwert beachten und diesen in Originaleinheiten angegebenen Wert als tatsächlichen Wert weiterverwenden.

Die Anzeige für Messungen oder Quellen kann für kundenspezifische Einheiten eingerichtet werden. Hierzu eine Funktion auswählen (z. B. mV Gleichstrom), nach Bedarf skalieren und anschließend einen alphanumerischen Namen (z.B. "PH") für die kundenspezifischen Einheiten eingeben.

Einrichten einer kundenspezifischen Einheit:

- Beim Messen der gewünschten Funktion bzw. deren Verwendung als Quelle den Softkey Skale drücken und dann in der Liste Kund.spez Einheiten auswählen.
- 2. Die 0 %- und 100 %-Skalierungswerte für die Eingabe der Übertragungsfunktion eingeben.
- 3. Den Softkey Kund.spez Einheiten drücken.

- 4. Die 0 %- und 100 %-Skalierungswerte für die Ausgabe der Übertragungsfunktion eingeben.
- Mit Hilfe des alphanumerischen Eingabefensters den Namen der neuen Maßeinheit eingeben (maximal 4 Zeichen), beispielsweise PH (für pH). Dann ENTER drücken.

Solange **Kund.spez Einheiten** aktiv ist, wird rechts neben der kundenspezifischen Maßeinheit Λ angezeigt. Sobald die kundenspezifische Maßeinheit programmiert wurde, steht sie im MEASURE/SOURCE-Modus mit geteiltem Fenster für Kalibrierverfahren zur Verfügung. **Kund.spez Einheiten** können ausgeschaltet werden, indem der Softkey **Kund.spez Einheiten** nochmals gedrückt wird.

Einsatz der 700-IV Nebenschlusseinrichtung

Zum gleichzeitigen Messen von Strom und dessen Verwendung als Quelle ist eine Nebenschlusseinrichtung erforderlich, die die Spannungsmessfunktion verwendet. Die 700-IV Nebenschlusseinrichtung von Fluke wurde speziell für den Einsatz mit Documenting Process-Produkten der Serie 700 entwickelt.

Messen von Strom mit der Nebenschlusseinrichtung:

- Die Nebenschlusseinrichtung an die Buchsen MEASURE V anschließen.
- 2. Das zu messende Stromsignal an die Nebenschlusseinrichtung anschließen.

753/754

Bedienungshandbuch

- vvo drücken, um die Gleichspannungs-Messfunktion auszuwählen.
- Den Softkey Skale drücken.
- Nebenschlusseinrichtung aus der Liste auswählen.
- 6. ENTER drücken.
- Das Produkt wird automatisch konfiguriert und verwendet den korrekten kundenspezifischen Skalierungsfaktor für die Nebenschlusseinrichtung.

Glätten von Messwerten

Das Produkt wendet in der Regel einen Softwarefilter an, um Messwerte zu glätten. Das gilt für alle Funktionen mit Ausnahme der Kontinuität. Die Spezifikationen dieses Handbuchs gehen davon aus, dass Glätten eingeschaltet ist. Die Glättungsmethode bildet laufend den Durchschnitt der acht zuletzt gemessenen Werte. Fluke empfiehlt, die Glättung eingeschaltet zu lassen. Das Ausschalten von Glätten kann Vorteile bringen, wenn der Wert einer einzelnen Messung größere Bedeutung hat als die Reduktion der Rauschstörungen und Messgenauigkeit. Zum Ausschalten der Glättung zweimal den Softkey Weitere Auswahl drücken. Dann den Softkey Glättung drücken, sodass aus angezeigt wird. Glättung nochmals drücken, um Glätten wieder einzuschalten. Die Standardeinstellung ist ein.

Hinweis

Wenn ein Meßwert außerhalb des Bereichs für statistische Rauschstörung liegt, so wird eine neue Durchschnittsberechnung gestartet. Wenn Glätten ausgeschaltet ist oder wenn das Glätten noch nicht vollständig abgeschlossen ist, so wird dies mit wangezeigt.

Stromausgabe

Die Betriebsart (z. B. MEASURE oder SOURCE) wird auf der Anzeige dargestellt. Falls das Produkt sich nicht im SOURCE-Modus befindet, strücken, bis SOURCE angezeigt wird. Zum Ändern der Parameter für die SOURCE-Funktionen muss sich das Produkt im SOURCE-Modus befinden.

Verwenden elektrischer Parameter als Quelle

Auswählen einer elektrischen Quellenfunktion:

- Die Messleitungen abhängig von der Quellenfunktion gemäß Abbildung 18 anschließen.
- 2. ma für Strom, woc für Gleichspannung, ma für Frequenz oder a für Widerstand drücken.
- 3. Den erforderlichen Ausgabewert eingeben und dann

 ENTER drücken. Um beispielsweise 5,5 V

 Gleichspannung als Quelle zu verwenden,

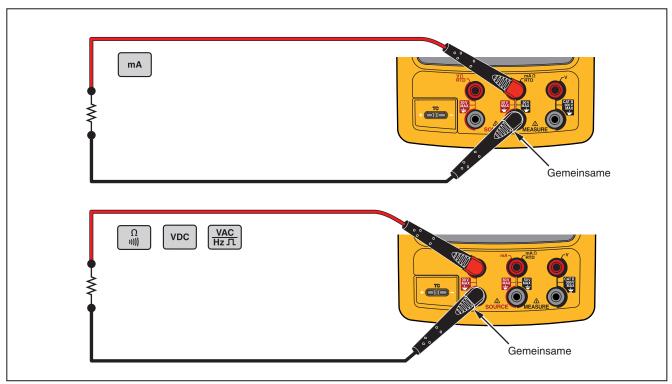
 © ⑤ ⑥
 und ENTER drücken.

44

Hinweis

Bei der Verwendung von Frequenz als Quelle reagieren, wenn das Produkt zur Auswahl einer nullsymmetrischen Sinuswelle oder positiven Rechteckwelle auffordert. Die angegebene Amplitude ist eine Punkt-zu-Punkt-Amplitude.

4. Um den Ausgabewert zu ändern, einen neuen Wert eingeben und dann enten drücken.


Hinweis

Bei der Verwendung von Strom als Quelle warten, bis das Symbol -- verschwunden ist, bevor die Ausgabe verwendet wird.

- 5. Um den Ausgabewert in der aktuellen SOURCE-Funktion festzulegen, CLEAR drücken, den gewünschten Wert eingeben und ENTER drücken.
- 6. Die Quellenfunktion kann vollständig abgeschaltet werden, indem zweimal [CLEAR] gedrückt wird.

Hinweis

Die Quellenfunktion Strom wird zum Speisen einer Schleife benutzt. Dies ist nicht dasselbe wie die Stromschleifenfunktion, in der das Produkt ein Prozessinstrument mit Strom versorgt. Mit der Funktion Stromschleife im Einstellmodus wird eine Stromschleife erzeugt.

gkv16f.eps

Abbildung 18. Elektrische Quellenverbindungen

4 bis 20 mA Transmittersimulation

Das Produkt kann mit Hilfe der SOURCE-mA-Funktion in einer Stromschleife als Last konfiguriert werden. Wenn im SOURCE-Modus _____ gedrückt wird, fordert die Anzeige zur Auswahl von Quelle mA oder Transmitter simulieren auf. Bei Verwendung von Quelle mA erzeugt das Produkt Strom, und bei Transmitter simulieren erzeugt das Produkt variablen Widerstand und reguliert damit den Strom, um den eingestellten Wert beizubehalten. Ein externes Netzteil mit der positiven (oberen) mA-Anschlussbuchse verbinden, dargestellt in Abbildung 19.

Hinweis

Außerdem im Abschnitt "Transmitter-Modus" nachlesen, in dem das Produkt vorübergehend als Ersatz für einen Prozesstransmitter mit zwei Leitungen konfiguriert werden kann.

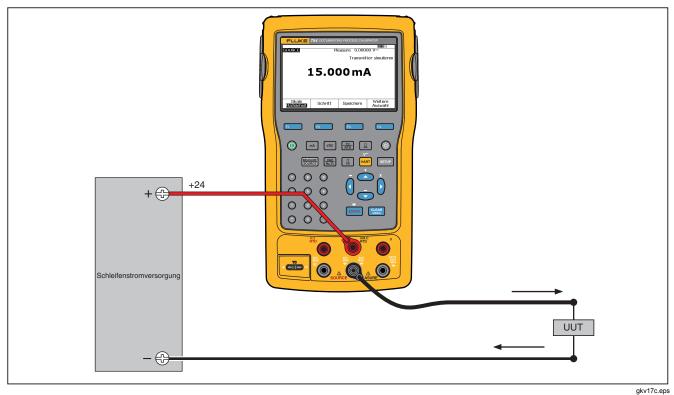
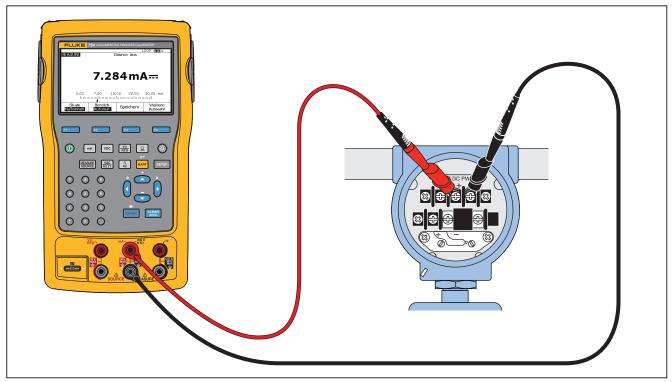


Abbildung 19. Anschlüsse für die Simulation eines 4 bis 20 mA-Transmitters

Versorgung mit Schleifenstrom

Das Produkt liefert Schleifenstrom bei 26 V Gleichstrom durch einen internen Vorwiderstand von 250 Ω . Die Einstellung liefert genug Strom für zwei oder drei 4-20mA-Geräte in der Schleife.

Wenn Schleifenstrom vewendet wird, dienen die mA-Buchsen zum Messen der Stromschleife. Das bedeutet, dass die SOURCE mA, MEASURE RTD und Messfunktionen Ω nicht verfügbar sind. Siehe Tabelle 10.


Das Produkt gemäß Abbildung 20 in Reihe mit der Instrument-Stromschleife schalten. Versorgung mit Schleifenstrom:

SETUP für den Einstellmodus drücken.

Hinweis

Schleife Strom, aus ist markiert.

- 2. und drücken, um aus oder ein auszuwählen.
- 3. ENTER drücken.
- Den Softkey Fertig drücken. In der Anzeige wird "LOOP" dargestellt, wenn Schleifenstrom in Betrieb ist.

gkv18c.eps

Abbildung 20. Verbindungen zur Versorgung mit Schleifenstrom

Quellen von Druck

Das Produkt verfügt über eine Anzeigefunktion für Quellendruck. Dafür ist eine externe Handdruckpumpe erforderlich. Mit dieser Funktion Instrumente kalibrieren, die eine Druckquelle oder Differenzdruckmessung benötigen. Abbildungen 21 und 36 zeigen ein Beispiel dieser Anwendung.

Fluke bietet eine breite Palette von Bereichen und Typen von Druckmodulen an, siehe "Zubehör". Bevor ein Druckmodul eingesetzt wird, sollte dessen Bedienungsanweisung gelesen werden. Die Module unterscheiden sich darin, wie sie verwendet und auf Null gestellt werden, welche Typen von Prozessdruckmedien erlaubt sind sowie in ihren Genauigkeitsspezifikationen.

Siehe Abbildung 21, um die Druckquellenanzeige zu verwenden:

Marnung

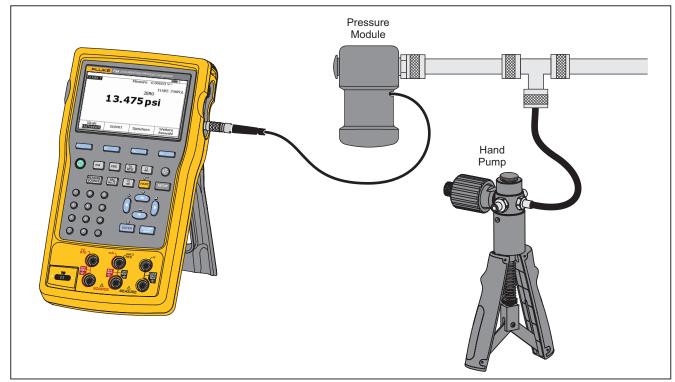
Zur Vermeidung einer heftigen Freisetzung von Druck in einem Drucksystem vor dem Anschließen des Druckmoduls an die Druckleitung das Ventil schließen und den Druck langsam ablassen.

∧ Vorsicht

Zur Vermeidung mechanischer Schäden am Druckmodul:

- Nie mehr als 10 ft.-lb. Drehmoment zwischen den Druckmodulanschlüssen bzw. zwischen einem Druckanschluss und dem Druckmodulgehäuse anwenden.
- Die Anschlüsse des Druckmoduls immer mit dem korrekten Drehmoment an der Druckleitung bzw. am Adapter anschließen.
- Zur Vermeidung von Schäden am Druckmodul durch Überdruck nie einen Druck anlegen, der den auf dem Druckmodul angegebenen Maximaldruck übersteigt.
- Zur Vermeidung von Schäden am Druckmodul durch Korrosion das Druckmodul ausschließlich mit spezifizierten Materialien einsetzen. Informationen über die Materialverträglichkeit befinden sich auf dem Druckmodulgehäuse sowie in dessen Bedienungsanleitung.

753/754


Bedienungshandbuch

- Ein Druckmodul und die Druckquelle an das Produkt anschließen. Siehe Abbildung 21. Die Schraubgewinde des Druckmoduls eignen sich für ¼ NPT-Anschlußstücke (NPT, Normal Pressure und Temperature / Normaldruck u. Wenn nötig, den ¼-Zoll-NPT-¼-Zoll-ISO-Adapter verwenden.
- 2. Gegebenenfalls Für SOURCE-Modus drücken.
- a drücken. Das Produkt erkennt automatisch, welches Druckmodul angeschlossen ist, und stellt seinen Messbereich entsprechend ein.
- 4. Das Druckmodul gemäß der Beschreibung auf dem zugehörigen Anleitungsblatt nullstellen. Die Modultypen unterscheiden sich darin, wie sie auf Null gestellt werden. Das Druckmodul MUSS auf Null gestellt werden, bevor eine Aufgabe durchgeführt wird, bei der Druck gemessen oder als Quelle verwendet wird.

- Das Drucksystem mit Hilfe der Druckquelle und der Kalibratoranzeige auf den erforderlichen Druck bringen.
- Gegebenenfalls können die Druckanzeigeeinheiten in psi, mHg, inHg, inH₂O, ftH₂O, mH₂O, bar, Pa, g/cm² oder inH₂O@60°F geändert werden. Metrische Einheiten (kPa, mmHg usw.) werden im Einstellmodus in ihren Basiseinheiten (Pa, mHg usw.) angezeigt.

Ändern der Druckanzeigeeinheiten:

- 1. SETUP drücken.
- Zweimal Nächste Seite drücken.
- Den Kursor auf ENTER Druckeinheiten setzen und dann drücken.
- 5. ENTER drücken.
- Den Softkey Fertig drücken.

gkv19c.eps

Abbildung 21. Verbindungen zum Verwenden von Druck als Quelle

Simulieren von Thermoelementen

Hinweis

Im Abschnitt "Temperaturmessung" befindet sich eine Tabelle mit Thermoelementtypen, die von dem Produkt unterstützt werden.

Die Produkt-TC-E/A-Buchse über den passenden Thermoelementministecker (polarisierter Thermoelementstecker mit flachen Inline-Stiften, Mittenabstand 7,9 mm) und Thermoelementdraht mit dem zu testenden Instrument verbinden.

∧ Vorsicht

Um Schäden am Produkt zu vermeiden, nicht versuchen, einen Ministecker in die falsche Buchse zu zwingen. Einer der beiden Steckerstifte ist breiter als der andere.

Diese Verbindung ist in Abbildung 19 dargestellt. Simulieren von Thermoelementen:

- Die Thermoelementleiter mit dem passenden Ministecker und dann mit dem TC-Ein-/Ausgang am Produkt verbinden. Siehe Abbildung 15.
- 2. Gegebenenfalls [#SOURCE-Modus drücken.

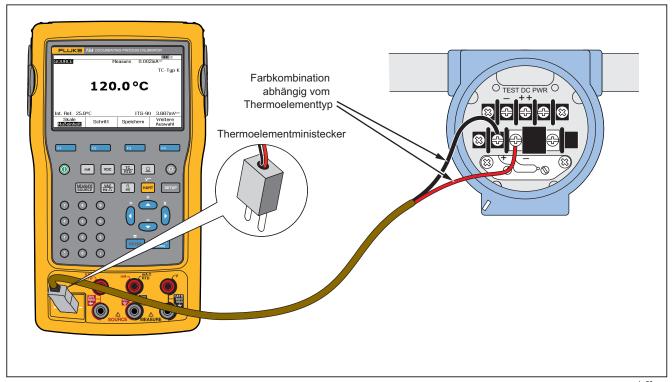
- 3. In und dann Internation der TC-Sensortyp auszuwählen. Die Anzeige fordert zur Auswahl des Thermoelementtyps auf.
- oder ♥ und dann [mitter] drücken, um "Lineare Temperatur" (Standard) oder "Lineare mV" (für die Kalibrierung eines Temperatur-Transmitters, der Millivolt in lineare Messwerte umwandelt) auszuwählen.
- 6. Die zu simulierende Temperatur wie von der Anzeige gefordert eingeben und ENTER drücken.

Hinweis

Beim Einsatz von Kupferleitern anstelle der Thermoelementleiter liegt der Referenzpunkt nicht mehr innerhalb des Produkts. Er verschiebt sich zu der Eingangs-Anschlussbuchse des Instruments (Transmitter, Anzeiger, Kontroller usw.). Die externe Bezugstemperatur muss genau gemessen und im Produkt aufgezeichnet werden. Dazu Grücken und Ref. Stellen-Komp. und Ref. Stellen-Temp. festlegen. Die Eingabe einer externen Bezugstemperatur bewirkt, dass das Produkt die Spannung in Bezug auf diesen neuen Temperaturbezugspunkt reguliert.

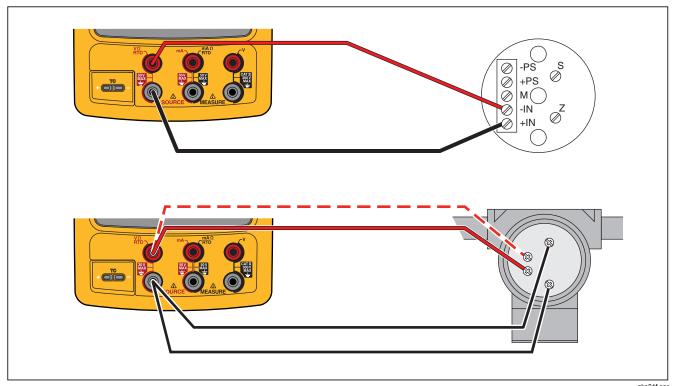
Simulieren von RTDs

Hinweis


In Tabelle 8 befinden sich Daten zu Typen von RTDs (Widerstandstemperaturfühlern), die mit dem Produkt kompatibel sind.

Das Produkt gemäß Abbildung 23 mit dem zu testenden Instrument verbinden. Die Abbildung zeigt die Verbindungen für 2-, 3- und 4-Leiter-Transmitter. Bei 3- oder 4-Leiter-Transmittern die 10 cm langen Überbrückungskabel verwenden, um die dritten und vierten Leiter an die $V\Omega$ RTD-Buchsen der Quelle anzuschließen.

Simulieren eines RTDs (Widerstandstemperaturfühlers):


- 1. Gegebenenfalls Für SOURCE-Modus drücken.
- 2. Randrücken.
- 3. oder ▼ drücken, um RTD auszuwählen.
- 4. INTER drücken. Die Anzeige "RTD-Typ wählen" wird dargestellt.
- Das Produkt fordert dazu auf, die zu simulierende Temperatur über das Tastenfeld einzugeben. Temperatur eingeben und dann ENTER drücken.

55

gkv20c.eps

Abbildung 22. Verbindungen zum Simulieren eines Thermoelements

gks21f.eps

Abbildung 23. Verbindungen zum Simulieren eines RTDs

Verwenden von Temperatur als Quelle mit Hilfe einer Hart Scientific Drywell

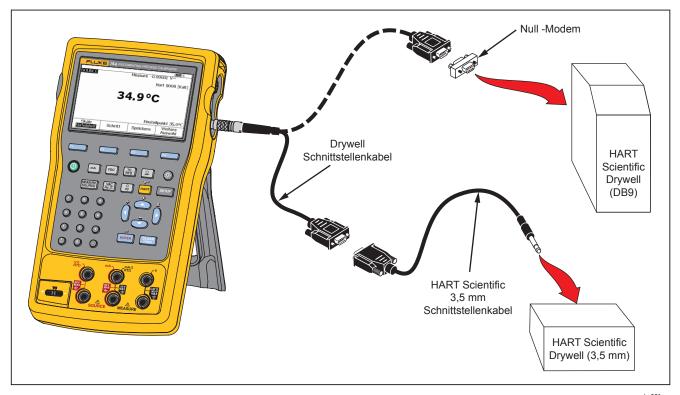
Das Produkt kann mit Hilfe einer Hart Scientific Drywell Temperatur als Quelle verwenden. Viele Modelle werden unterstützt.

Der Drywell-Treiber kann mit anderen Drywells von Hart Scientific kommunizieren, vorausgesetzt, dass diese auf die standardmäßigen Befehle von Hart Scientific für serielle Schnittstellen reagieren.

Das Produkt mit der Drywell verbinden, indem das Drywell-Schnittstellenkabel gemäß Abbildung 24 mit dem Druckmodulanschluss verbunden wird. Wenn die Drywell einen DB9-Anschluss hat, das Drywell-Schnittstellenkabel direkt mit dem DB9-Null-Modemadapter an die Drywell anschließen. Bei Drywells mit 3,5 mm-Steckerbuchse muss zusätzlich zu dem Drywell-Schnittstellenkabel des Produkts das serielle Kabel verwendet werden, das mit der Drywell geliefert wird. Die DB9-Anschlüsse der beiden Kabel verbinden und den 3,5 mm-Stecker mit der Drywell verbinden.

Sicherstellen, dass die Drywell mit 2.400, 4.800 oder 9.600 Bit/s für serielle Kommunikation konfiguriert ist. Andere Bitraten werden nicht vom Produkt unterstützt.

Verwenden einer Temperatur als Quelle mit einer Drywell:


- 1. Gegebenenfalls Source für SOURCE-Modus drücken.
- Image: description of the description
- Drywell aus der Liste der Optionen auswählen und

 drücken.
- Das Produkt beginnt mit der Suche nach einer Drywell.
 Wenn das Produkt länger als 10 Sekunden

- **Anschlussversuch** anzeigt, die Kabelverbindungen und Drywell-Konfiguration noch einmal überprüfen.
- 5. Falls eine duale Quelle festgestellt wird, wird ein Menü angezeigt, in dem eine "heiße" oder "kalte" Seite der dualen Quelle ausgewählt werden kann. Es kann nur jeweils eine Seite der Drywell gesteuert werden. Sollen die Seiten gewechselt werden, muss die Drywell neu angeschlossen werden. Dazu muss entweder das serielle Kabel getrennt oder der Drywell-Quellenmodus verlassen und erneut ausgewählt werden.
- 6. Wenn die Drywell verbunden ist, wird in der primären Anzeige die tatsächliche Temperatur der Drywell angezeigt, wie sie intern von der Drywell gemessen wird. Oberhalb des primären Messwerts wird die Drywell-Modellnummer angezeigt. Der Einstellpunkt für die Drywell wird in der sekundären Anzeige unten auf dem Bildschirm dargestellt. Anfangs ist der Einstellpunkt auf den Wert eingestellt, der bereits in der Drywell gespeichert ist.
- 7. Die Temperatur eingeben, die als Quelle vewendet werden soll, und ENTER drücken.

Der festgelegte Anzeiger wird gelöscht, wenn die tatsächliche Temperatur ein Grad vom Einstellpunkt entfernt ist und sich nicht rasch ändert. Empfehlungen bezüglich der Stabilisierungszeit für dieses Modell befinden sich in der Dokumentation zur Drywell.

Die obere Temperaturgrenze ist durch die Einstellung Obere Grenze" beschränkt, die in der Drywell gespeichert ist. Falls das Produkt die Drywell nicht auf Temperaturen innerhalb der Drywell-Spezifikationen festlegen will, mithilfe des Handbuchs der Drywell die Einstellung "Obere Grenze" überprüfen.

gkv99f.eps

Abbildung 24. Temperatur als Quelle mit Drywell verwenden

Hinweis

Wenn das Produkt Temperaturen in Kelvin angezeigt, wird in der Anzeige der Drywell Celsius angezeigt, und wenn das Produkt Rankine anzeigt, zeigt die Drywell Fahrenheit an.

Quellenskala

Mit Hilfe dieser Funktion wird der Ausgang in Übereinstimmung mit den Eingangsanforderungen und der Ausgabe eines geeigneten Prozessinstruments skaliert. Skalenprozente eignen sich für Transmitter mit linearer oder auf Quadratwurzelfunktion basierender Ausgabe.

Transmitter mit linearer Ausgabe

- 1. Gegebenenfalls Für SOURCE-Modus drücken.
- 2. Wie bereits beschrieben, eine Quellenfunktion auswählen ([mA],[voc], [MC], [n], [TC] oder [\omega]) und einen Wert eingeben.
- 3. Den Softkey Skale drücken.
- 4. % aus der Liste auswählen.
- 5. ENTER drücken.
- Das numerische Tastenfeld zur Eingabe des 0 %-Werts der Skala (0 % Punkt) verwenden.
- 7. ENTER drücken.

- Das numerische Tastenfeld zur Eingabe des 100 %-Werts der Skala (100 % Punkt) verwenden.
- Den Softkey Fertig drücken.

Skalenprozente bleiben aktiv, bis zu einer anderen Quellenfunktion gewechselt oder der Softkey **Skale** gedrückt und ein anderer Skalamodus ausgewählt wird.

Quadratwurzel-Prozessvariablen

Wird beim Arbeiten mit einer Skala √ gedrückt, so zeigt das Produkt den eingegebenen Wert, quadriert und umgewandelt in technische Notation, als Wert für die Ausgabe an.

- 1. Gegebenenfalls Source für SOURCE-Modus drücken.
- 2. Wie bereits beschrieben, eine Quellenfunktion auswählen ([mA], [voc], [MAC], [n], [n], [n] oder [sc]) und einen Wert eingeben.
- 3. Den Softkey Skale drücken.
- √ aus der Liste auswählen.
- Das numerische Tastenfeld zur Eingabe des 0 %-Werts der Skala (0 % Punkt) verwenden.
- 6. ENTER drücken.
- Das numerische Tastenfeld zur Eingabe des 100 %-Werts der Skala (100 % Punkt) verwenden.
- 8. ENTER drücken.

9. Den Softkey Fertig drücken.

Quadratwurzel der Skalenprozente bleiben aktiv, bis zu einer anderen Quellenfunktion gewechselt oder der Softkey **Skale** gedrückt und ein anderer Skalamodus ausgewählt wird.

Schrittweises oder gleichmäßiges Anpassen der Ausgabewerte

Es gibt zwei Funktionen zum Justieren des Werts von Quellenfunktionen, mit Ausnahme von Druck. Bei Druck muss eine externe Druckquelle verwendet werden.

- Gleichmäßiges Anpassen der Ausgabewerte (Rampenfunktion) mit der Option zur Erkennung von Kontinuitäts- und Spannungsveränderungen.

Verwendung manueller schrittweiser Anpassung

Bei der manuellen **Schritt**-Funktion wird eine Schrittgröße in technischer Notation (mV, V, mA, °C usw.) oder % der Skala ausgewählt. Die schrittweise Anpassung der Ausgabe an Skalenprozente eignet sich für schnelles Umschalten zwischen 0 % und 100 % (Schrittgröße = 100 %) oder zwischen 0 %, 50 % und 100 % (Schrittgröße = 50 %). Die schrittweise Anpassung funktioniert im SOURCE-Modus und im MEASURE/SOURCE-Modus

Auswählen einer Schrittgröße:

- Unter der entsprechenden Zwischenüberschrift unter "SOURCE-Modus" in diesem Handbuch nachlesen (z. B. "Verwenden elektrischer Parameter als Quelle"), und das Produkt mit dem zu prüfenden Stromkreis verbinden.
- 2. Gegebenenfalls [MEASURE] für SOURCE-Modus drücken.
- Das Produkt auf den erforderlichen Quellenwert einstellen.
- Um den Quellenwert schrittweise in Skalenprozenten anzupassen, den Prozentsatz des Skalenwerts wie zuvor in "Messskala" angegeben festlegen.
- 5. Den Softkey Schritt drücken.
- Das numerische Tastenfeld zur Eingabe der Schrittgröße in der Einheit verwenden, die auf der Anzeige dargestellt ist.
- 7. Den Softkey Fertig drücken.
- und drücken, um die Ausgabe schrittweise zu justieren.

Verwendung automatischer Schritte

Konfigurieren des Produkts zum automatischen Durchführen einer Reihe von Schritten, entweder einmal durch die Sequenz oder wiederholt:

 Unter der entsprechenden Zwischenüberschrift unter "SOURCE-Modus" in diesem Handbuch nachlesen (z. B. "Verwenden elektrischer Parameter als Quelle"), und das Produkt mit dem zu prüfenden Stromkreis verbinden.

- 2. Gegebenenfalls street für SOURCE-Modus drücken.
- Das Produkt auf den erforderlichen Quellenwert einstellen.
- Um den Quellenwert schrittweise in Skalenprozenten anzupassen, den Prozentsatz des Skalenwerts wie zuvor in "Messskala" angegeben festlegen.
- Den Softkey Schritt drücken.
- 6. Den Softkey Automat. Schritt drücken.
- Die Anzeige fordert zur Auswahl von Werten für diese Parameter auf:
 - Startpunkt (als Einheit oder % der Skala)
 - Endpunkt
 - Anzahl der Schritte
 - Zeitdauer pro Schritt
 - Wiederholungsmodus, einzelne Einstellung oder fortlaufende Wiederholung
 - Schrittstil, Sägezahn- oder Dreiecksmuster
 - Startverzögerung

Den Softkey **Schritt starten** drücken, um die Schrittfunktion automatisch zu starten. Der entsprechende Softkey erhält **Rampenende** als neue Beschriftung.

- Den Softkey Schritt stoppen, um die automatische Schrittfunktion anzuhalten.
- 9. Den Softkey **Fertig** drücken, um zum normalen Betrieb zurückzukehren.

Gleichmäßige Anpassung der Ausgabe

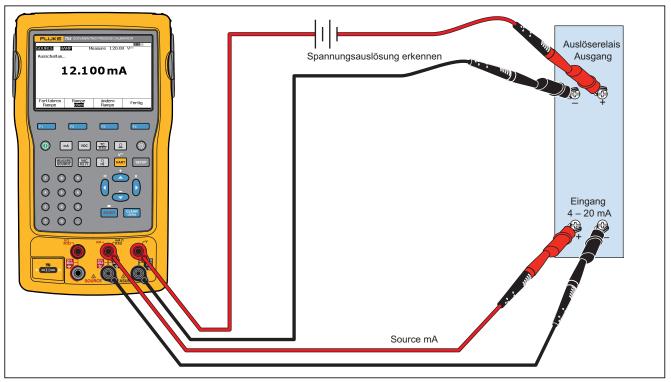
Bei der gleichmäßigen Anpassung gleitet der Wert der Quelle nach oben oder nach unten. Mit der Rampenfunktion können Schalter oder Alarme geprüft werden. Die Funktion wird außerdem verwendet, wenn eine sachte Zu- oder Abnahme der Ausgabefunktion erforderlich ist. Die Definition der Rampe im Produkt kann in technischer Notation (mV, V, mA, °C usw.) oder in % der Skala erfolgen.

Wenn das Signal gleichmäßig angepasst wird, wird die Ausgabe viermal pro Sekunde justiert. Die Bestimmung der Schrittgröße ist an die Auswahl der Endpunkte und die Dauer einer Rampe gebunden. Wird beispielsweise eine Rampe definiert, die innerhalb von 10 Sekunden von 1 mV bis auf 1 V ansteigt, so wird die Ausgabe in Schritten von ungefähr 25 mV justiert.

Die Rampenfunktion fährt bis zur ausgewählten Grenze fort, oder bis eine optionale Auslösebedingung erreicht ist. Die optionale Ausschalterkennung funktioniert wie folgt: das Produkt überprüft bei aktiver Rampenfunktion nach jedem ¼-Sekundeninterval, ob eine Änderung von 1V-Gleichspannung oder eine Änderung des Kontinuitätsstatus (**Offen** oder **Kurz**) vorliegt.

Gleichmäßiges Anpassen (z. B. Gleiten der Quelle):

- Unter dem entsprechenden Abschnitt weiter oben in diesem Handbuch nachlesen (z. B. "Verwenden elektrischer Parameter als Quelle"), und das Produkt mit dem zu prüfenden Stromkreis verbinden.
- Soll die Rampenfunktion beim Auftreten einer Ausschaltbedingung beendet werden, wie folgt vorgehen: Anschließen des Abschaltstromkreises (Gleichspannung) an die Anschlussbuchse V MEASURE sowie eines zweiten Abschaltstromkreises (Kontinuität) an die Anschlussbuchse mA Ω RTD MEASURE. (Bei der Quellenfunktion Strom ist der Abschaltstromkreis Kontinuität nicht verfügbar.)
- 3. Gegebenenfalls Source für SOURCE-Modus drücken.
- 4. Das Produkt wie bereits angegeben auf den erforderlichen Quellenwert einstellen.
- Zum gleichmäßigen Anpassen der Ausgabe in % der Skala, Skalenprozente wie bereits unter "Messskala" angegeben festlegen.
- 6. Den Softkey Weitere Auswahl drücken.
- Den Softkey Rampe drücken. Die Anzeige wechselt zu dem in Abbildung 25 dargestellten Bildschirm.
- 8. Die angegebenen Parameter aufzeichnen. Die Parameter **AnfangswertEndwert** und **Rampenzeit** eingeben.
- Soll die Rampenfunktion beim Auftreten einer Abschaltbedingung automatisch beendet werden, wie folgt vorgehen: Ausschaltanzeige auf ein setzen und


Spannung oder **Kontinuität** als Abschaltfunktion auswählen.

			(Ⅲ ※					
SOURCE RA	AMP							
Anfangswert	Anfangswert eingeben							
	Anfangswer	t ???????	₽ mA					
	Endwer	???????? mA						
	Rampenzei	it ????	?? s					
A	usschaltanzeig	e au:	5					
Αι	ısschaltfunktio	n Vo	lts					
Abbrechen			Fertig					

akv41s.bmp

Abbildung 25. Rampenbildschirm

- Den Softkey Fertig drücken. Am oberen Rand der Anzeige den Anzeiger RAMP rechts von SOURCE beachten.
- Eine ansteigende oder eine sinkende Rampe wählen, indem der Softkey Rampe oben/unten benutzt wird.
- Zum Starten der Rampenfunktion den Softkey Rampe starten drücken.
- Die Rampenfunktion wird fortgesetzt, bis ein Auslöser bemerkt wird (falls aktiviert), die Rampenzeit abläuft oder der Softkey Rampe stoppen gedrückt wird. Siehe Abbildung 26.

gkv22c.eps

Abbildung 26. Überprüfen des Abschaltalarmschalters

Gleichzeitiges Messen und Quellen

Den MEASURE/SOURCE-Modus verwenden, um ein Prozessinstrument zu kalibrieren oder zu emulieren. Schaffe drücken, so dass ein geteilter Bildschirm angezeigt wird, wie in Abbildung 27.

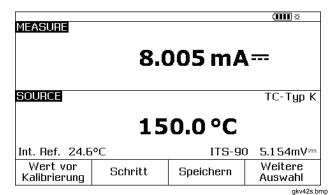


Abbildung 27. Measure und Source - Bildschirm

In Tabelle 9 werden die Funktionen angezeigt, die gleichzeitig verwendet werden können, wenn der Schleifenstrom deaktiviert ist. In Tabelle 10 werden die Funktionen angezeigt, die gleichzeitig verwendet werden können, wenn der Schleifenstrom aktiviert ist.

Schritt oder Autom. Schritt – Mit diesen Funktionen kann die Ausgabe im MEASURE/SOURCE-Modus justiert werden. Dies kann auch mit der Kalibrierungsroutine erfolgen, die durch Drücken des Softkeys Vor Kalibrierung angegeben wird.

Beim Kalibrieren eines Prozessinstruments die beiden Softkeys verwenden, die im MEASURE/SOURCE-Modus angezeigt werden.

- Vor Kalibrierung Damit kann eine Kalibrierungsroutine zum Abrufen und Aufzeichnen von Daten vor der Kalibrierung festgelegt werden.
- Automat. Schritt Damit kann das Produkt wie bereits beschrieben für die schrittweise Anpassung eingerichtet werden.

Tabelle 9. Gleichzeitige MEASURE/SOURCE-Funktionen ohne Stromschleife

		SOURCE-Funktion						
MEASURE-Funktion	Gleichspannung V	mA	Freq	Ω	TC	Widerstandste mperaturfühler (RTD)	Druck	
Gleichspannung V	•	•	•	•	•	•	•	
mA	•		•	•	•	•	•	
V Wechselstrom	•	•	•	•	•	•	•	
Frequenz (≥20 Hz)	•	•	•	•	•	•	•	
Niederfrequenz (<20 Hz)								
Ω	•		•	•	•	•	•	
Kontinuität	•		•	•	•	•	•	
TC	•	•	•	•		•	•	
Widerstandstemperaturfü hler (RTD)	•		•	•	•	•	•	
3-Leiter-RTD	•		•	•	•	•	•	
4-Leiter-RTD	•		•	•	•	•	•	
Druck	•	•	•	•	•	•		

Tabelle 10. Gleichzeitige MEASURE/SOURCE-Funktionen mit Stromschleife

	SOURCE-Funktion						
MEASURE-Funktion	Gleichspannung V	mA	Freq	Ω	TC	Widerstandste mperaturfühler (RTD)	Druck
Gleichspannung V	•		•	•	•	•	•
mA	•		•	•	•	•	•
V Wechselstrom	•		•	•	•	•	•
Frequenz (≥20 Hz)	•		•	•	•	•	•
TC	•		•	•		•	•
Druck	•		•	•	•	•	

Kalibrierung von Prozessinstrumenten

Hinweis

Anweisungen zum Kalibrieren eines HART-fähigen Transmitters mit Hilfe der integrierten HART-Schnittstelle befinden sich in der 754 HART-Modus-Bedienungsanleitung.

Wenn das Produkt sich im MEASURE/SOURCE-Modus befindet, kann eine integrierte Kalibrierungsroutine konfiguriert werden, wenn der Softkey **Vor Kalibrierung** gedrückt wird. "Vor Kalibrierung" beinhaltet die Testresultate, die den Zustand des Transmitters vor der Justierung darstellen. Das Produkt kann Aufgaben ausführen, die mit einem Hostcomputer und *DPCTrack2*-Anwendungssoftware entwickelt wurden. Siehe "Kommunikation mit einem PC".

Erstellen von Testdaten (vor Kalibrierung)

In dem nachfolgenden Beispiel wird gezeigt, wie Daten Vor Kalibrierung für einen Thermoelement-Temperaturtransmitter bereitgestellt werden. Hier simuliert das Produkt die Ausgabe eines Thermoelements und misst den vom Transmitter geregelten Strom. Andere Transmitter verwenden die gleiche Prozedur. Bevor **Vor Kalibrierung** gedrückt wird, ist für das Ändern der Betriebsparameter eine Rückkehr in den MEASUREoder SOURCE-Modus notwendig.

- Die Messleitungen gemäß Abbildung 30 an das zu prüfende Instrument anschließen. Die Verbindungen simulieren ein Thermoelement und messen den zurückfließenden Strom.
- 2. Gegebenenfalls sollie für MEASURE-Modus drücken.
- 3. ma drücken.
- 4. MEASURE für SOURCE-Modus drücken.
- 5. TC und ENTER drücken, um TC-Sensor auszuwählen.
- und drücken, um den Thermoelementtyp auszuwählen.
- zum Markieren drücken und dann erren, um den Quellenmodus "Lineare Temperatur" auszuwählen.
- 8. Einen Quellenwert aufzeichnen, z. B. 100 Grad, und dann ENTER drücken.

 für MEASURE/SOURCE-Modus drücken. Die Anzeige wechselt zu dem in Abbildung 28 dargestellten Bildschirm

MEASURE 8.005 mA= SOURCE TC-Tup K 150.0°C Int. Ref. 24.6°C ITS-90 5.154mV== Wert vor Weitere Schritt Speichern Auswahl Kalibrierung akv42s.bmp

Abbildung 28. Prozessinstrumentkalibrierung – Bildschirm

10. Den Softkey **Vor Kalibrierung** und dann den Softkey **Instrument** drücken (([ENTER]).

Die Anzeige wechselt zu dem in Abbildung 29 dargestellten Bildschirm.

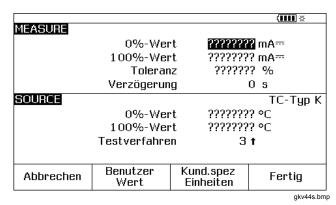
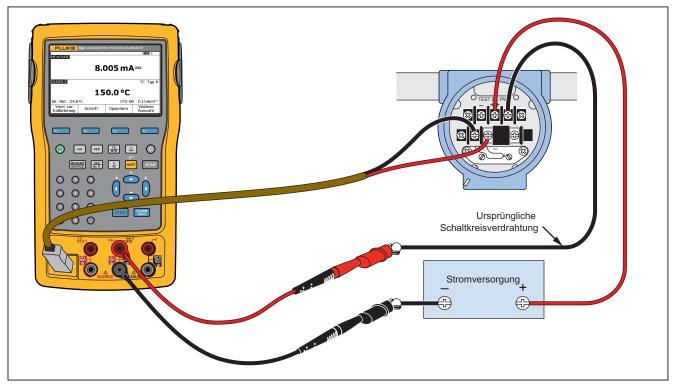



Abbildung 29. Prozessinstrumentkalibrierung – Bildschirm

 Werte für 0 % und 100 % von 4,0 mA und 20,0 mA aufzeichnen, in dieser Reihenfolge. Toleranz auf 0,5 % der Spanne setzen

gkv23c.eps

Abbildung 30. Kalibrieren eines Thermoelement-Temperaturtransmitters

- 12. Es kann mehr Verzögerungszeit eingegeben werden, um dem Prozessinstrument Gelegenheit zum Stabilisieren zu geben, als die normale Einschwingzeit des Produkts (etwa 2 Sekunden). Um die Verzögerungszeit zu ändern, unter Verzögerung die gewünschte Zeit in Sekunden eingeben.
- Wenn die Kalibrierungsprozedur des Instruments die manuelle Aufzeichnung des Messwerts oder der Quelle erfordert, den Softkey Benutzer Wert für vom Benutzer aufgezeichnete Werte drücken.

Kund.spez Einheiten – Zum Angeben kundenspezifischer Einheiten wie PH. Ein Beispiel dafür befindet sich im Abschnitt "Kundenspezifische Maßeinheiten" weiter oben in diesem Handbuch. Bei der Verwendung kundenspezifischer Einheiten wird das Symbol ⚠ in der Anzeige neben dem Wert und in den Ergebnissen angezeigt.

Den Softkey Fertig drücken, nachdem die

Den Softkey **Fertig** drücken, nachdem die kundenspezifische Einheit programmiert wurde.

15. Das Testverfahren besteht aus einer Reihe von Testpunkten und ihrer bedingten Ausführung (Spannungsund Kontinuitäts-Stabilität) bei steigender oder fallender Skala. In diesem Beispiel werden fünf Punkte verwendet (0 %, 25 %, 50 %, 75 % und 100 %), nur steigend. Der Anstieg wird durch den Aufwärtspfeil in der Anzeige

- dargestellt. ENTER drücken, um in dieser Zeile zu einem anderen Testverfahren zu wechseln. Es wird eine Liste von Verfahren angezeigt, unter denen gewählt werden kann. Eines auswählen und dann den Softkey **Fertig** drücken.
- Wenn die Aufzeichnung der Kalibrierungsparameter abgeschlossen ist, sollte die Anzeige zu dem in Abbildung 31 gezeigten Bildschirm wechseln.

			(Ⅲ ※
MEASURE			
	0%-Wer	t 4.00	0 mA≕
	100%-Wer	t 20.00	0 mA≕
	Toleran	z 0.5	0 %
	Verzögerun	g	0 s
SOURCE			TC-Typ K
	0%-Wer	t 100.	0 °C
	100%-Wer	t 300.	0 °C
	Testverfahre	n 5	î
Abbrechen	Benutzer Wert	Kund.spez Einheiten	Fertig

gkv45s.bmp

Abbildung 31. Kalibrierungsparameter – Bildschirm

 Den Softkey Fertig drücken, um die Kalibrierungsparameter zu akzeptieren. Die Anzeige wechselt zu dem in Abbildung 32 dargestellten Bildschirm.

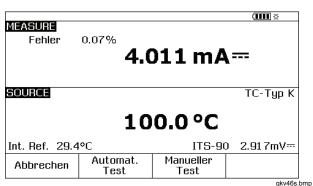


Abbildung 32. Measure und Source-Bildschirm für Kalibrierung

18. Zu diesem Zeitpunkt kann ein automatischer Test durchgeführt werden, oder die Testpunkte können manuell durchschritten werden. Den Softkey Automat. Test drücken, wenn das Produkt den automatischen Test durchführen soll. Gegebenenfalls Abbrechen drücken, um die Kalibrierungsprozedur zu verlassen. Die Tests beginnen am ersten Testpunkt, verwenden die richtige Temperatur als Quelle und messen den entsprechenden Strom vom Transmitter.

- Wenn eine Messung stabil ist und aufgezeichnet wird, fährt das Produkt mit dem nachfolgenden Schritt fort. Da das Produkt wartet, bis eine Messung sich stabilisiert, fungiert der automatische Test wie erforderlich für Geräte mit integrierter Glättung. Die Abweichung gegenüber dem erwarteten Wert zeigt sich oben links im Messfenster.
- 19. Das Produkt schreitet zu den verbleibenden Testpunkten. Bei der Kalibrierung von elektrischen Parametern oder Temperaturen laufen die Testpunkte automatisch ab. Wenn Druck als Quelle verwendet wird, hält das Produkt bei jedem Schritt an, damit die Druckquelle justiert werden kann. Wenn die Tests abgeschlossen sind, wird eine Fehlerzusammenfassungstabelle ähnlich wie in Abbildung 33 angezeigt.

QUELLE		MESSEN	₹IIII ※ FEHLER%
100.0	°C	3.904 mA≕	-0.60
150.0	°C	7.965 mA≕	-0.22
200.0	°C	12.053mA≕	0.33
250.0	°C	16.094mA≕	0.59
300.0	°C	20.175mA≕	1.09
Abbrechen	Vorige(r) Seite	Nächste(r) Seite	Fertig

gkv47s.bmp

Abbildung 33. Fehlerzusammenfassung – Bildschirm

- Die Fehler sind in der Resultatsübersicht markiert. In diesem Beispiel ist eine Justierung erforderlich, da drei Tests nicht bestanden wurden. Die Fehler lagen außerhalb der ausgewählten Toleranz von ±0,5 %.
- 20. Den Softkey **Fertig** drücken, um die Daten zu behalten, oder den Softkey **Abbrechen** drücken, um die Daten zu löschen und nochmals zu beginnen.

Im normalen Betrieb kann mit dem Softkey **Speicher durchsehen** der aufgezeichnete Dateneintrag betrachtet und die Tabelle aufgerufen werden. Diese Daten können auf einen Hostcomputer hochgeladen werden, auf dem die kompatible *DPCTrack2*-Anwendungssoftware ausgeführt wird. Siehe "Kommunikation mit einem PC".

Transmitterjustierung

Hinweis

Jeweils die Anweisungen des Transmitterherstellers lesen, um die Justiereinrichtung zu finden und die Anschlüsse für den Transmitter zu erkennen.

Vornehmen von Kalibrierungsabgleichen am Transmitter:

 Nach Durchsicht der Ergebniszusammenfassung den Softkey Fertig drücken.

- Den Softkey Justieren drücken. Das Produkt verwendet 0 % der Spanne als Quelle (100 °C in diesem Beispiel) und zeigt diese Softkeys an:
 - Zugriff 100 % / Zugriff 0 %
 - Zugriff 50 %
 - Nach Kalibrierung
 - Fertig
- 3. Den Transmitter für 4 mA justieren und dann den Softkey **Zugriff 100 % drücken**.
- Die Transmitterausgabe auf 20 mA justieren. In der 754
 HART-Modus-Bedienungsanleitung nachlesen, falls
 HART-Justierungen (Ausgangsabgleich und
 Messfühlerabgleich) erforderlich sind.
- 5. Falls die Spanne in Schritt 4 justiert wurde, Schritte 3 und 4 durchführen, bis keine Justierung mehr erforderlich ist.
- Den Transmitter bei 50 % untersuchen. Falls er den Spezifikationen entspricht, ist die Justierung abgeschlossen. Falls nicht, Linearität justieren und diese Prozedur bei Schritt 3 erneut beginnen.

Erstellen der Testdaten (nach Kalibrierung)

Wie folgt vorgehen, um Daten *Nach Kalibrierung* für den Thermoelement-Temperaturtransmitter zu erstellen, der justiert wurde.

- Den Softkey Nach Kalibrierung drücken, um Daten Nach Kalibrierung aufzuzeichnen.
- Den Softkey Automat. Test drücken, um die automatische Durchführung aller Testpunkte zu starten. Die einzelnen Schritte können auch manuell durchgeführt werden.
- Wenn die Tests abgeschlossen sind, die Fehlerzusammenfassungstabelle lesen. Siehe Abbildung 34.

			(IIII) %
QUELLE		MESSEN	FEHLER%
100.0	°C	3.966 mA≕	-0.21
150.0	°C	7.991 mA≕	-0.06
200.0		12.029mA≕	0.18
250.0		16.023mA≕	0.14
300.0	°C	19.983mA≕	-0.11
Abbrechen	Vorige(r) Seite	Nächste(r) Seite	Fertig

gkv48s.bmp

Abbildung 34. Daten nach Kalibrierung – Bildschirm

Unbeständige Mess- oder Quellenwerte sind markiert. Das bedeutet, dass es einen unbeständigen Wert gab (

W Signalanzeige), als die Messung vorgenommen wurde.

 Falls alle Werte der Spezifikation entsprechen, so wie hier, den Softkey Fertig drücken. Die Daten werden im Speicher abgelegt.

Testkommentare

Das Produkt führt Aufgaben (kundenspezifische Prozeduren) durch, die mit einem Hostcomputer und *DPCTrack2*-Anwendungssoftware erstellt wurden. Siehe "Kommunikation mit einem PC". Eine Aufgabe kann eine Liste vorgeschlagener Kommentare anzeigen, während sie ausgeführt wird. Wenn die Kommentarliste angezeigt wird,

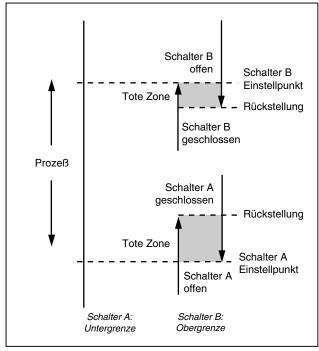
und
und ann eine drücken, um einen Kommentar auszuwählen, der mit den Testergebnissen gespeichert werden soll.

Kalibrieren eines Differenzdruckinstruments

Die Prozedur zum Kalibrieren eines √-Instruments entspricht, mit Ausnahme der nachfolgenden Unterschiede, derjenigen für andere Instrumente.

- Die Quadratwurzeloption der Quellenfunktion wird automatisch aktiviert, wenn die Kalibrierprozedur Vor Kalibrierung vollständig durchgeführt wird.
- Die Anzeigen im Me
 ß- und im Quellenfenster erfolgen in technischer Notation.

 Der gemessene Prozentwert wird automatisch für den Empfang der Quadratwurzelwerte des Transmitters und für die Berechnung der Fehlerrate des Instruments korrigiert.


Die Prozedur für $\sqrt{\ }$ -Instrument wählen, nachdem der Softkey **Vor Kalibrierung** gedrückt wurde.

Schalterkalibrierung

Für das Kalibrieren eines Schalters werden ebenfalls die Kalibrierungsvorlagen "Vor Kalibrierung" und "Nach Kalibrierung" verwendet. Die 1-Pt. Schalttest oder2-Pt. Schalltest-Prozedur in einem Menü auswählen, nachdem der Softkey Vor Kalibrierung gedrückt wurde. In Abbildung 35 ist die Terminologie angegeben, die beim Kalibrieren von Grenzwertschaltern verwendet wird.

Die Vorlage zum Einstellen der Schalterprozedur verwendet folgende Parameter:

- Schalterposition (normalerweise offen oder geschlossen)
- Für jeden Einstellpunkt:
 - Wert des Einstellpunktes
 - Toleranz des Einstellpunktes
 - Obere und untere Grenze
 - Minimale tote Zone
 - Maximale tote Zone

gkv24f.eps

Abbildung 35. Schalter: Begriffe

753/754

Bedienungshandbuch

Durchführen eines Druckschaltertests: Der Schalter in diesem Beispiel setzt eine obere Grenze von 10 psi. Die Einstellbedingung ist ein geschlossener Schalterkontakt. Für Druckschalter den Softkey **Manueller Test** verwenden. Für Schalter, bei denen die Verwendung von Druck als Quelle nicht erforderlich ist, den Test mit der Option **Automat. Test** durchführen.

- 1. Den Ausgang des Druckschalters mittels den Messleitungen mit den mittleren Anschlussbuchsen (mA Ω RTD) des Produkts verbinden.
- Das Druckmodul an das Produkt anschließen und die Druckleitung an den Schalter anschließen. Druckleitung entlüftet lassen.
- 3. Gegebenenfalls für MEASURE-Modus drücken.
- 4. für die Messfunktion Kontinuität drücken.
- 5. MEASURE für SOURCE-Modus drücken.

- 7. CLEAR für die Nullstellung des Druckmoduls drücken.
- 8. MEASURE drücken.
- 9. Den Softkey Vor Kalibrierung drücken.
- 10. 1-Pt. Schalttest im Menü markieren und ENTER drücken.
- 11. Eme drücken, um die Parameter für Einstellpunkt 1 zu verändern
- 12. Folgende Auswahl treffen:

Einstellpunkt 1 = 10,000 psi

Einstellpunkt-Typ = Hoch/Oben

Einstellstatus = Kurz

- 13. Den Softkey Fertig drücken.
- 14. Die **Toleranz** auf 0,5 psi einstellen.
- 15. Die nächsten beiden Parameter Min. tote Zone und Max. tote Zone sind wahlfreie Parameter. Sie werden in diesem Beispiel nicht eingestellt. Mit diesen Parametern würde die mindestens zulässige Größe der Totzone beschrieben.

- emen drücken, um die Auswahlmöglichkeiten zum Einstellen der Ausschaltfunktion bis zu Ausschalten fortsetzen zu durchlaufen.
- 17. Den Softkey Fertig drücken.
- 18. Den Softkey Manueller Test drücken.
- Die Entlüftung der Druckleitung schließen und den Druck langsam bis zum Auslösepunkt (Trip-Point) erhöhen.
- Hat der Schalter den Auslösepunkt erreicht, den Druck langsam vermindern, bis sich der Schalter zurücksetzt. Gegebenenfalls kann dieser Zyklus erneut durchgeführt werden.
- Den Softkey Fertig drücken und die Resultate ansehen.
- Den Softkey Fertig drücken und, falls gewünscht, Label, Serien-Nr. und/oder Anwender eingeben.
- 23. Den Softkey Fertig drücken.
- 24. Den Schalter in Anspruch nehmen, indem der angewandte Druck geändert wird. Den Schalter justieren, bis der Einstellpunkt richtig ist.
- 25. Zur Steuerung des Produkts die Softkeys verwenden und den Schalter nach Bedarf justieren.

- 26. Den Softkey Fertig drücken.
- 27. Den Softkey Nach Kalibrierung drücken, um den Test mit den gleichen Parametern zu wiederholen. Resultate von den "Vor Kalibrierung"- und "Nach Kalibrierung"-Tests werden zur späteren Ansicht oder zum Hochladen im Produktspeicher abgelegt.

Die Prozedur für Schalter, die auf andere Parameter reagieren, funktioniert ähnlich. Beim Durchführen eines 2-Pt. Schalttest den Anweisungen folgen, die für den ersten Schalttest auf der Anzeige angegeben sind. Messleitungen wechseln und den zweiten Schalttest durchführen.

Transmitter-Modus

Das Produkt kann so eingestellt werden, dass variable Eingaben (MEASURE) die Ausgabe (SOURCE) steuern, wie ein Transmitter. Dieser Modus heißt Transmitter-Modus". Im Transmitter-Modus kann das Produkt vorübergehend als Alternative für einen defekten bzw. möglicherweise defekten Transmitter verwendet werden.

Marnung

Um Personenschäden zu vermeiden, den Transmitter-Modus nicht in einer Umgebung verwenden, die in sich sichere Ausstattung und Vorgehensweisen erfordert.

∧ Vorsicht

Den Transmitter-Modus nur als Diagnosemittel. Einen vollständig aufgeladenen Akku verwenden. Das Produkt nicht über eine längere Zeitdauer an Stelle eines Transmitters einsetzen. Einrichten des Produkts zum Emulieren eines Transmitters:

- Die Drähte des Kontrollbusses vom Transmitterausgang trennen (Kontrollsignal Schleifenstrom oder Gleichstrom V).
- Die für diese Funktion geeigneten Produktbuchsen (SOURCE) über Testleiter an Stelle des Transmitters mit dem Kontrollbus verbinden.
- 3. Den Prozesseingang (z. B. ein Thermoelement) vom Transmitter trennen.
- Den Prozesseingang mit den geeigneten Produktbuchsen (MEASURE) oder Eingangsanschlüssen verbinden.
- 5. Gegebenenfalls street für MEASURE-Modus drücken.
- Die für den Prozesseingang geeignete Funktionstaste drücken.
- 7. MEASURE für SOURCE-Modus drücken.

- 8. Die für die Regelung des Ausgangs geeignete Funktionstaste drücken (z. B. voc oder vol.).). Wenn der Transmitter an einer Stromschleife mit Stromversorgung angeschlossen ist, **Transmitter simulieren** wählen, um die Stromausgabe zu bestimmen.
- 9. Einen Quellenwert auswählen, z. B. 4 mA.
- 10. MEASURE/SOURCE-Modus drücken.
- 11. **Weitere Auswahl** drücken, bis der Softkey **Transmitter Modus** angezeigt wird.
- 12. Den Softkey **Transmitter Modus** drücken.
- 13. Die Werte 0 % und 100 % für MEASURE und SOURCE auf dem Bildschirm einstellen. Für die Transferfunktion kann **Linear** oder √ ausgewählt werden.
- 14. Den Softkey Fertig drücken.

Das Produkt befindet sich nun im Transmitter-Modus. Dabei misst es den Prozesseingang und regelt das Kontrollsignal am Ausgang proportional zur Messung am Eingang.

- Um die Parameter f
 ür den Transmitter-Modus zu ändern, ändern Konfig. dr
 ücken und die Prozedur aus Schritt 13 erneut durchf
 ühren.
- Den Softkey Abbrechen drücken, um den Transmitter-Modus zu verlassen.

Speicheroperationen

Speichern von Ergebnissen

"Vor Kalibrierung/Nach Kalibrierung"-Testergebnisse werden nach Abschluss jeder Testroutine automatisch gespeichert. In den anderen Modi (MEASURE, SOURCE oder MEASURE/SOURCE) kann die aktuelle Anzeige für spätere Analysen gesichert werden, indem der Softkey **Speichern** gedrückt wird.

Bedienungshandbuch

Nach dem Drücken von **Speichern** speichert das Produkt die Daten und bestätigt dies mit der Anzeige folgender Informationen (siehe auch Abbildung 36): Indexnummer der gespeicherten Daten, Datum, Uhrzeit und Restspeicher.

Labeleingabe: 'Fortfahren' drücken

Eintrag gespeichert 2

05/11/11 08:00:04 am

Restspeicher 99.2%

Abbrechen

Fortfahren

Fertig

Abbildung 36. Gespeicherte Daten - Bildschirm

Um den gespeicherten Daten Informationen hinzuzufügen, den Softkey **Fortfahren** drücken. Die Anzeige fordert zum Aufzeichnen des Instrumentenbezeichners (**Label**), der Seriennummer des Instruments (**Serien-Nr.**) und des Bedienernamens (**Anwender**) auf, wie in Abbildung 37 gezeigt.

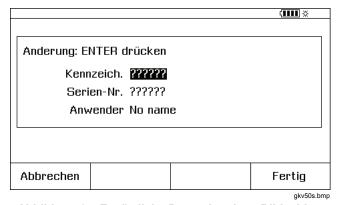


Abbildung 37. Zusätzliche Dateneingabe – Bildschirm

Alphanumerische Zeichen können mit dem optionalen Strichcodeleser oder über die Produkttastatur in markierten Feldern aufgezeichnet werden.

Um alphanumerische Zeichen mit den Produkttasten aufzuzeichnen, [ENTER] drücken, wenn der Kursor sich auf dem erforderlichen Feld befindet, um dieses zu ändern (im Beispiel oben "Kennzeich.").

Auf der Anzeige wird ein Fenster für alphanumerische Eingaben dargestellt. Siehe Abbildung 38.

										(IIII
Kennzeich.										
Zeich	en	wähl	len u	nd E	NTE	3 dri	ücke	n		
				D N X	E O Y	F P Z	G Q ,	H R -	I S Ñ	J T /
Abbr	ech	en	Le	erst	elle	Zurück			Fertig	

gkv51s.bmp

Abbildung 38. Alphanumerische Eingaben – Fenster

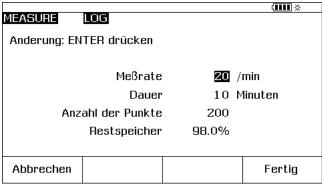
- Zahlen mit dem numerischen Tastenfeld aufzeichnen und Buchstaben durch Markierung des gewünschten Zeichens mit Hilfe von ♠, ♥, ♠ und ♠ und anschließend ┗ਆER. . Dann den Softkey Leerstelle und danach ┗ਆER drücken.
- Wenn der Eintrag vollständig ist, den Softkey Fertig drücken.

Durchsehen des Speichers

Den Softkey **Weitere Auswahl** drücken, bis **Speicher durchsehen** angezeigt wird. Dann den Softkey **Speicher durchsehen** drücken, um die gespeicherten Ergebnisse aufzurufen.

Wenn der Softkey **Speicher durchsehen** gedrückt wird, wechselt die Anzeige zu dem Bildschirm in Abbildung 39.

					(IIII)
resul. aus 05/2	23/11 1 von18				
	Messi	ung	04:33:01	pm	
	Que	elle	04:33:05	pm	
	TT-101-1	4A	04:33:25	pm	
	Quellenmessu	ıng	04:33:27	pm	
	Messi	ung	04:33:28	pm	
	PT-121	l -5	04:33:47	pm	
Daten	der Aufzeichnu		04:33:54		
	Min M	1ax	04:33:56	pm	
	Min Max				
	Messi	ung	04:34:00	pm	
Zugriff Ergebnis	Vorige(r) Seite	Nä	chste(r) Seite		Fertig


Abbildung 39. Speicher durchsehen - Bildschirm

gkv52s.bmp

ⓐ oder ♥ und oder den Softkey **Zugriff Ergebnis** drücken, um ein gespeichertes Ergebnis anzuzeigen.

Protokollieren von Daten

Benutzer können eine Reihe von Messwerten aufzeichnen, die später auf einen Hostcomputer hochgeladen werden sollen, auf dem die *DPCTrack2*-Anwendungssoftware ausgeführt wird. Siehe "Kommunikation mit einem PC". Es können bis zu 8000 Messwerte aufgezeichnet werden. Die Aufzeichnungskapazität ist abhängig von der Messrate und der Messdauer sowie vom Speicherbedarf anderer Einrichtungen, wie Prozeduren oder gespeicherte Resultate. Die Messrate und -dauer in Minuten aufzeichnen. Siehe Abbildung 40.

akv53s.bmp

Abbildung 40. Parameter für Datenprotokollierung – Bildschirm

Protokollieren von Daten:

- 1. Gegebenenfalls WEASURE-Modus drücken.
- 2. Zweimal den Softkey Weitere Auswahl drücken.
- 3. Den Softkey Aufzeichn. drücken.
- Eine Messrate aus der angezeigten Liste auswählen (1, 2, 5, 10, 20, 30 oder 60 Messungen pro Minute).
 oder
 drücken, um die Messrate auszuwählen.
- 5. ENTER drücken.
- 6. Turken, um den Kursor auf Dauer zu bewegen.
- Mit Hilfe des numerischen Tastenfelds die Dauer in Minuten eingeben und dann enten drücken. Die maximale Dauer hängt von der Messrate und von der Speicherverfügbarkeit ab.

Tabelle 11 enthält Richtwerte für die maximale Messdauer; dabei wurde angenommen, dass der Speicher nicht für andere Zwecke verwendet wird.

Tabelle 11. Dauer - Grenzwerte

Messrate pro Minute	Max. Anzahl Aufzeichnungen	Messdauer
1	8000	133 Stunden
2	8000	66 Stunden
5	8000	26 Stunden
10	8000	13 Stunden
20	8000	6 Stunden
30	7980	4 Stunden
60	7980	2 Stunden

∧ Vorsicht

Um mögliche Schäden am Produkt zu vermeiden, einen vollständig aufgeladenen Akku und die geeignete Dauer verwenden. Das Akkuladegerät kann auch verwendet werden, um Energieverluste während einer Aufzeichnung zu vermeiden. Falls während einer Aufzeichnung ein niedriger Akkuladestand angezeigt wird, wird die Aufzeichnung abgebrochen; die bis zu diesem Zeitpunkt aufgezeichneten Daten sind gesichert. Länger andauernde Datenaufzeichnungen können die aufgrund der restlichen Akkuladung verfügbare Betriebszeit überschreiten.

- Nachdem das Produkt die Dauer aufgezeichnet hat, wird auf der Anzeige angegeben, wie viel Speicherplatz bei dieser Dauer verbraucht wird. Siehe den Prozentsatz für Restspeicher auf der Anzeige. Restspeicher gibt an, wie viel Prozent des verfügbaren Speichers durch die definierte Aufzeichnung benutzt werden würde.
- Den Softkey Fertig drücken. Die Anzeige wechselt zu dem in Abbildung 41 dargestellten Bildschirm.

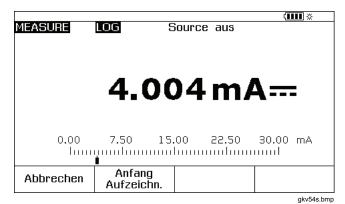


Abbildung 41. Anfang Aufzeichnung – Bildschirm

84

- Den Anzeiger LOG rechts neben MEASURE beachten. Den Softkey Anfang Aufzeichn. drücken, um Daten aufzuzeichnen.
- 11. Das Produkt behält weiterhin Datenpunkte bei, bis die Dauer abgelaufen ist oder der Softkey Fertig gedrückt wird. Falls die Aufzeichnung durch diese Prozeduren beendet wurden, behält das Produkt die Daten als Speicherelement, das auf einen Hostcomputer hochgeladen werden kann, auf dem die DPCTrack2-Anwendungssoftware ausgeführt wird. Siehe "Kommunikation mit einem PC".

Aufzeichnen des Minimal- und Maximalwerts einer Messung

Die Anzeige kann zum Aufzeichnen und Anzeigen der Minimal- (min) und Maximalwerte (max) eingestellt werden. Diese Werte werden nie geglättet, auch dann nicht, wenn Glätten eingeschaltet ist. Den Softkey Weitere Auswahl zweimal und dann den Softkey Min Max drücken, um die Anzeige der Extremwerte einzuschalten. CLEBAN drücken, um die "Min Max"-Register zurückzusetzen. Den Softkey Min Max nochmals drücken, um zur normalen Anzeige zurückzukehren. Abbildung 42 zeigt die Anzeige, wenn "Min Max" eingeschaltet ist.

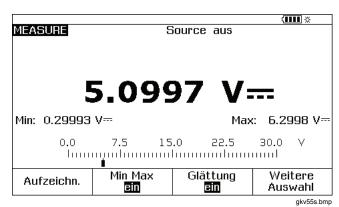


Abbildung 42. Min Max - Bildschirm

Ausführen einer Computer-Prozedur

Den Softkey **Weitere Auswahl** drücken, bis der Softkey **Prozeduren** angezeigt wird. Dann **Prozeduren** drücken, um die Liste der Prozeduren anzuzeigen, die von einem Hostcomputer heruntergeladen wurden. Prozeduren sind Produkteinstellungen, die mit einem Prozedurnamen gekennzeichnet (z. B. Transmittertyp und Hersteller) und gesichert wurden. Eine Prozedur konfiguriert das Produkt auf die Kalibrierung eines Transmitters; sie beinhaltet die Werte aller benötigten Parameter (Quellen- und Messfunktionen, 0 %- und 100 %-Werte, Teststrategie).

Während das Produkt von der Prozedur gesteuert wird, wird der Softkey Fortfahren zu Fortfahren Prozedur.

Löschen des Speichers

Im Einstellmodus **Speicher löschen** markieren und EMTER drücken, um den gesamten Speicher zu löschen; dies beinhaltet:

- Gespeicherte Ergebnisse
- Minimal- und Maximalwerte
- Daten von Aufzeichnungen

Eine Bestätigungsmeldung wird angezeigt, sodass der Speicher nicht versehentlich gelöscht wird.

Der Taschenrechner

Den integrierten Rechner für mathematische Gleichungen verwenden, bei denen die Quelle des Produkts oder die gemessenen Werte eine Rolle spielen. Die aktuellen Messund Quellenwerte und -einheiten können immer mit einem Tastendruck in eine Gleichung übernommen werden. Das Produkt misst und quellt während des Taschenrechnerbetriebs.

Den Softkey **Rechner** drücken, um den Rechner in den Modi SOURCE, MEASURE oder MEASURE/SOURCE zu starten. Gegebenenfalls den Softkey **Weitere Auswahl** drücken, um den Softkey **Rechner** anzuzeigen.

Den Softkey **Fertig** drücken, um zum normalen Betrieb zurückzukehren.

Speichern in und Abrufen aus Registern

Im Taschenrechnermodus zeigt das Produkt in der oberen Hälfte der Anzeige die folgenden drei Register und deren Inhalte an:

- **MEASURE** (der aktuelle Wert der Messfunktion)
- SOURCE (der aktuelle Wert der Quellenfunktion)
- **REGISTER** (temporärer Zwischenspeicher)

Den Softkey **Abrufen** und dann den Softkey für das jeweilige Register drücken, um die Inhalte eines beliebigen Registers in eine Berechnung einzufügen.

Speichern drücken, um den aktuellen Wert der Taschenrechneranzeige (untere Hälfte) in den Zwischenspeicher **REGISTER** (für spätere Wiederverwendung) oder ins Register **SOURCE** zu kopieren.

Setzen des Quellenwerts mittels Taschenrechner

Wenn in **SOURCE** gespeichert wird, zeigt das Produkt ggf. eine Auswahl an Einheitenmultiplikatoren an (z. B. mV oder V) und beginnt dann, diesen Wert als Quelle zu verwenden. Das Produkt speichert keine Werte in **SOURCE**, die außerhalb des Bereichs liegen.

Kurzanleitungen

Die nachfolgenden Abbildungen zeigen Messleiterverbindungen und die dazugehörenden Produktfunktionen für zahlreiche Anwendungen.

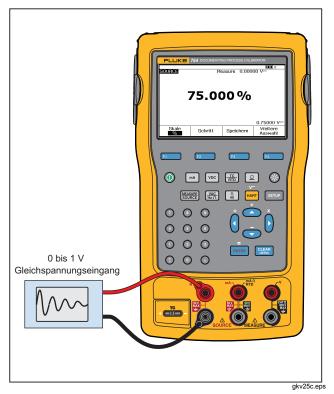
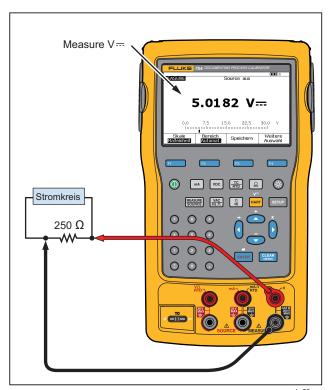
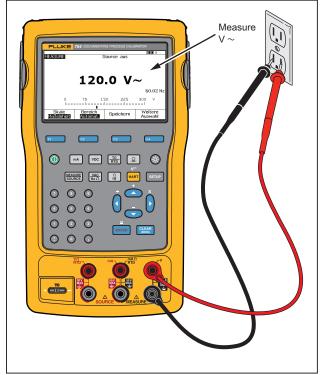
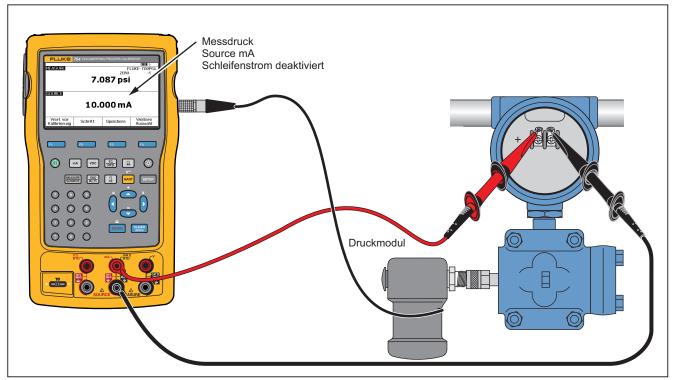


Abbildung43.Kalibrierung Grafikaufzeichnung


Abbildung 44.Messung Spannungsabfall

gkv26c.eps

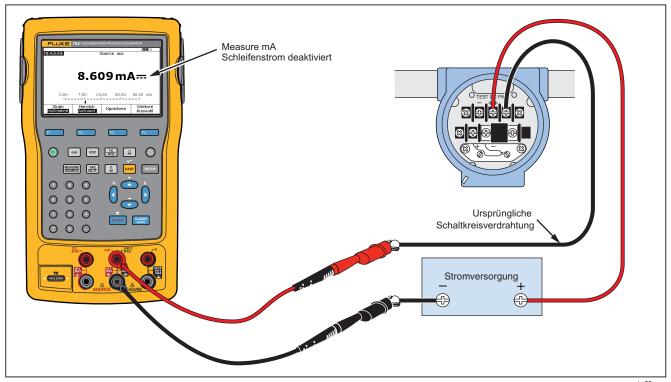

gkv27c.eps

Abbildung 45. Überwachen der Spannung und der Frequenz einer Wechselstromleitung

gkv28c.eps

Abbildung 46. Transmitterkalibrierung Strom-zu-Druck (S/D)

gkv29c.eps

Abbildung 47. Ausgangsstrom einer Transmittermessung

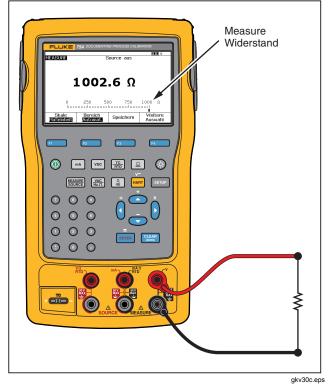


Abbildung 48. Messung Messwiderstand

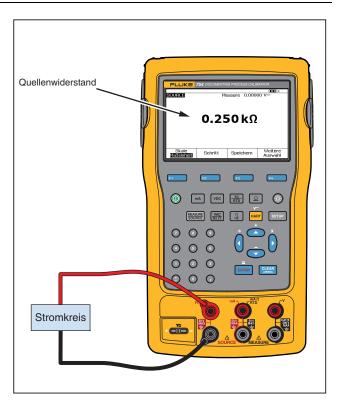


Abbildung 49. Widerstand - Quelle

gkv31c.eps

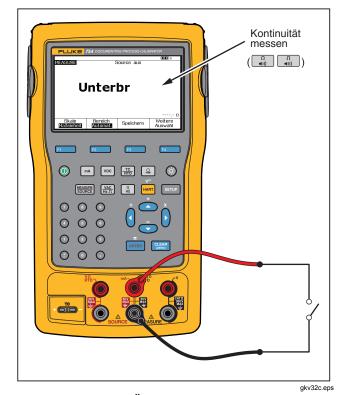


Abbildung 50. Überprüfung eines Schalters

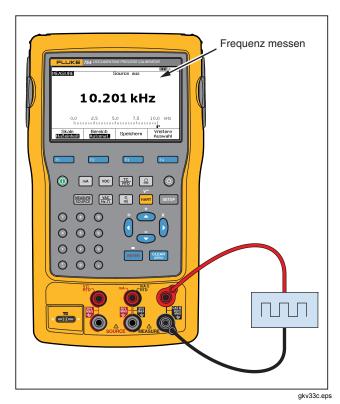
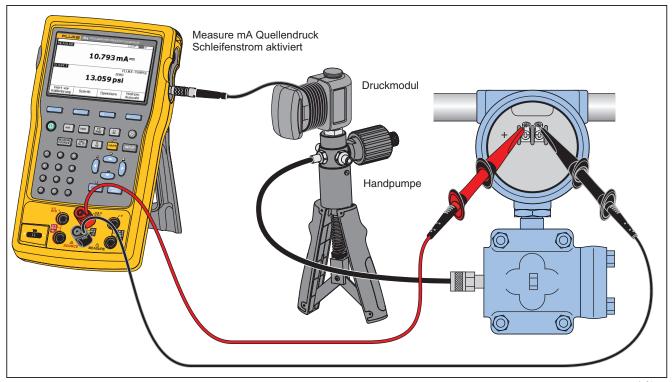
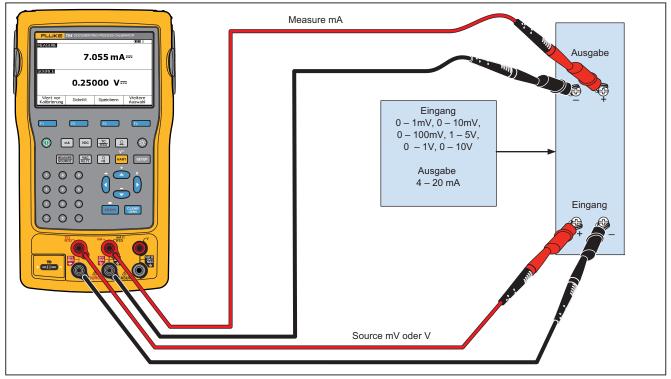




Abbildung 51. Drehzahlmesser-Untersuchung

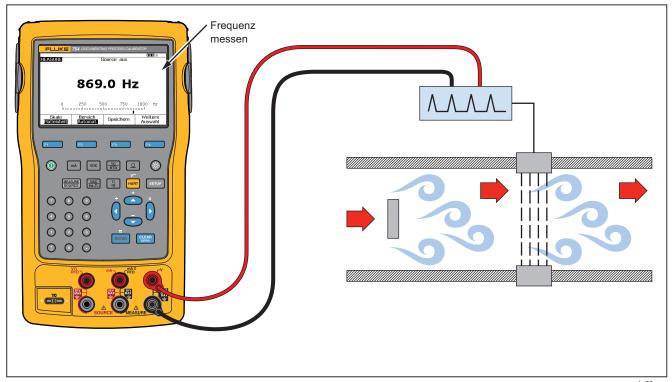

gkv34c.eps

Abbildung 52. Verbindung Analog- und HART-Drucktransmitter

gkv35c.eps

Abbildung 53. Transmitterkalibrierung mV in Strom

gkv36c.eps

Abbildung 54. Strömungsmesser Wirbelablösung – Prüfung

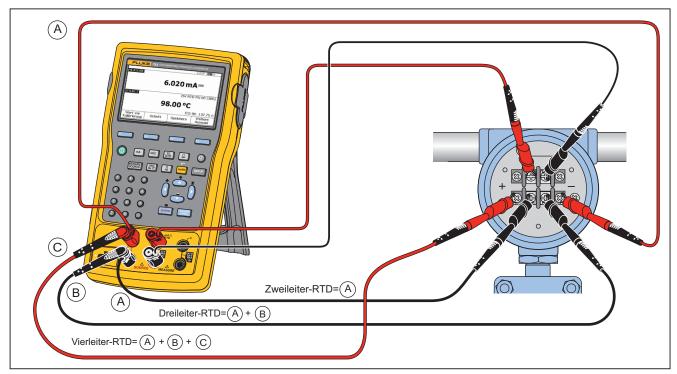


Abbildung 55. HART- und Analog-RTD-Transmitter – Verbindungen

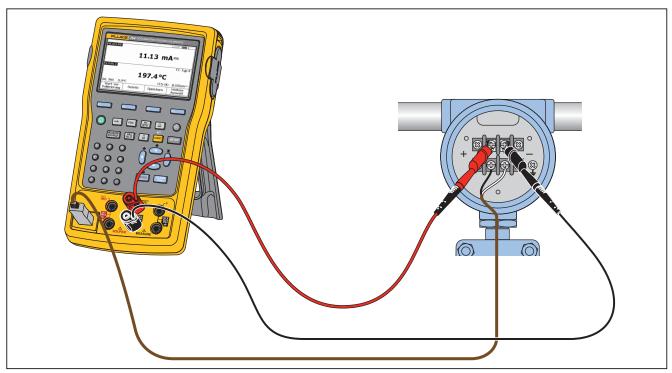
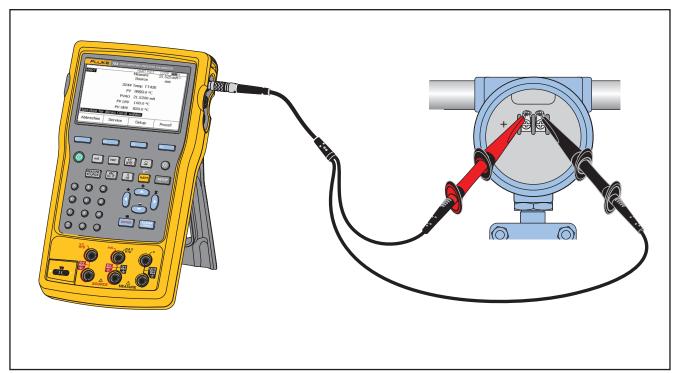



Abbildung 56. Analog- und HART-Thermoelement-Transmitterverbindungen

gkv61.eps

Gkv43.eps

Abbildung 57. Transmitter HART- Nur Kommunikation

Kommunikation mit einem PC

Gespeicherte Prozeduren und Ergebnisse können auf einen PC hoch- und davon heruntergeladen werden. Erforderlich sind ein PC, Microsoft Windows, USB-Kabel (mitgeliefert) und Fluke *DPCTrack2*[™]- Anwendungssoftware, oder die Software eines qualifizierten Fluke-Partners. Weitere Anweisungen befinden sich im *DPCTrack2-Bedienungshandbuch*.

Wartung

Zur Vermeidung von Stromschlag, Brand oder Verletzungen sind folgende Hinweise zu beachten:

- Das Produkt von einem zugelassenen Techniker reparieren lassen.
- Das Produkt nicht verwenden, wenn seine Abdeckung entfernt oder das Gehäuse offen ist. Es könnte zum Kontakt mit gefährlichen Spannungen kommen.
- Vor der Reinigung des Produkts die Eingangssignale entfernen.
- Nur spezifizierte Ersatzteile verwenden.

Hinweis

Das auf der Fluke-Website erhältliche 75X Series Calibration Manual enthält weitere Anweisungen zur Pflege und ein Beispiel einer Kalibrierprozedur sowie eine Liste der Ersatzteile.

Akkuwechsel

Den Akku ersetzen, wenn die Ladung nicht mehr über die übliche Dauer gehalten werden kann. Die Lebensdauer eines Akkusatzes erreicht oft bis zu 300 Lade-/Entladezyklen. Informationen zum Bestellen eines Ersatzakkus befinden sich in "Kontaktaufnahme mit Fluke" und "Kundenseitig auswechselbare Teile".

Hinweis

Aufgebrauchte Akkus/Batterien sollten nur von qualifizierten Recycling-Unternehmen oder von im Umgang mit gefährlichen Materialien ausgebildeten Personen entsorgt werden. Für Wiederverwertungsinformationen das nächstgelegene von Fluke autorisierte Servicezentrum kontaktieren.

Reinigung des Produkts

Das Produkt und Druckmodule mit einem weichen, mit Wasser angefeuchteten Gewebe reinigen. Bei Bedarf eine milde Seife verwenden.

∧ Vorsicht

Um mögliche Schäden am Produkt zu vermeiden, keine Lösungsmittel oder aggressiven Reinigungsmittel verwenden.

Daten der letzten Kalibrierung

Die Daten der letzten Kalibrierung und Prüfung werden auf dem Kalibrierungsaufkleber und im Einstellmodus auf dem Kalibrierungsbildschirm angezeigt. Dabei sollte die Kalibrierungsnummer auf dem Aufkleber mit der auf der Anzeige übereinstimmen. Die Kalibrierung des Produkts muss von qualifizierten Technikern durchgeführt werden. Weitere Informationen befinden sich im 75X Series Calibration Manual, das auf der Fluke-Website erhältlich ist.

Bei Problemen

<u>∧</u> Marnung

Um elektrische Schläge oder Personenschäden zu vermeiden, das Produkt nicht verwenden, wenn es sich anormal verhält. Unter Umständen ist die Schutzeinrichtung beeinträchtigt. Im Zweifelsfall sollte das Produkt gewartet werden.

Falls die Anzeige leer oder unlesbar ist, der Signalgeber aber funktioniert, wenn das Produkt eingeschaltet wird, sicherstellen, dass die Helligkeit richtig justiert ist. Weitere Informationen zum Justieren der Intensität befinden sich unter "Anzeigeintensität".

Falls das Produkt sich nicht einschalten lässt, sicherstellen, dass der Akku Strom führt oder das Ladegerät angeschlossen ist. Falls das Produkt Strom erhält, sollte die Ein- und Ausschalttaste leuchten. Falls die Taste leuchtet, das Produkt aber nicht startet, das Produkt warten lassen. Siehe "Kontaktaufnahme mit Fluke".

Kalibrierung oder Reparatur im Servicezentrum

Kalibrier-, Reparatur- oder Servicearbeiten, die nicht in diesem Handbuch behandelt sind, sollten nur durch qualifiziertes Servicepersonal durchgeführt werden. Falls das Produkt ausfällt, zunächst den Akkusatz prüfen und ggf. ersetzen.

Sicherstellen, dass das Produkt in Übereinstimmung mit den Anweisungen in diesem Handbuch betrieben wird. Wenn das Produkt defekt ist, eine Beschreibung des Fehlers zusammen mit dem Produkt einsenden. Druckmodule müssen nicht mitgesendet werden, so lange diese nicht auch defekt sind. Sicherstellen, dass das Produkt gut verpackt ist. Nach Möglichkeit die Originalverpackung verwenden. Siehe "Kontaktaufnahme mit Fluke" und die Garantieerklärung.

Kundenseitig auswechselbare Teile

In Tabelle 12 sind die Fluke-Teilenummern für alle kundenseitig auswechselbaren Teile des Produkts aufgeführt. Modell- oder Teilenummern von standardmäßiger oder optionaler Ausstattung befinden sich unter "Standardlieferumfang" und "Zubehör".

Tabelle 12. Ersatzteile

Element	Fluke-Teilenummer
Justierbarer Schnellauslöseriemen	3889532
Aufkleber für Ein-/Ausgangs-Anschlussbuchse	3405856
Neigefuß	3404790
BP7240 Akku	4022220
USB-Kabel	1671807
BC7240 Spannungsversorgung/Akkuladegerät	4022655
Linsenabdeckung	3609579
Krokodilklemmen-Set mit verlängerten Zähnen	3765923
754HCC HART-Kommunikationskabel-Baugruppe	3829410
AC280 Suregrip Hakenklemmen-Set	1610115
ТС-Карре	4073631
Hinweis: Siehe "Standardlieferumfang" und "Zubehör" für Model	l- und Teilenummern für austauschbare Ausrüstung.

Zubehör

Das unten aufgeführte Fluke-Zubehör ist mit dem Produkt kompatibel. Für Informationen zu diesen Zubehörartikeln und deren Preise bitte einen Fluke-Händler kontaktieren.

- 700-IV Current Shunt
- DPCTrack2-Software
- C799 Tragetasche
- BC7240 Ersatz-Akkuladegerät/universelle Spannungsversorgung
- HART Drywell Kabelzubehör (PN 2111088)
- 12-V-Auto-Akkuladegerät
- 700PCK Druckmodul-Kalibrierungs-Satz (setzt den Einsatz einer Ausrüstung für Druckkalibrierung und eines IBM PCTM-kompatiblen Computers voraus).
- 700PTP-1 Pneumatische Prüfpumpe
- 700HTP-1 Hydraulische Prüfpumpe
- Fluke-700TC1 Thermoelement-Miniadaptersatz
- Fluke-700TC2 Thermoelement-Miniadaptersatz
- C781 Tragetasche
- C700 Tragebehälter hart
- BP7240 Lithium-Ionen-Akku

- TL-Messleitungen
- AC Serie Meßleiterklemmen
- TP Serie Meßleitersonden
- 80PK Serie Thermoelemente
- Druckmodule Fluke Modellnummern sind unten aufgeführt. (Differenzdruckmodule können auch als einfache Druckmodule betrieben werden.) Für Informationen hier nicht aufgeführten Druckmodulen bitte den Fluke-Händler kontaktieren.
 - FLUKE-700P00 1 in. H2O/0.001
 - FLUKE-700P01 10 in. H2O/0.01
 - FLUKE-700P02 1 psi/0,0001
 - FLUKE-700P22 1 psi/0,0001
 - FLUKE-700P03 5 psi/0,0001
 - FLUKE-700P23 5 psi/0,0001
 - FLUKE-700P04 15 psi/0,001
 - FLUKE-700P24 15 psi/0,001
 - FLUKE-700P05 30 psi/0,001
 - FLUKE-700P06 100 psi/0,01
 - FLUKE-700P27 300 psi/0,01
 - FLUKE-700P07 500 psi/0,01
 - FLUKE-700P08 1000 psi/0,1

Bedienungshandbuch

- FLUKE-700P09 1500 psi/0,1
- FLUKE-700PA3 5 psi/0,0001
- FLUKE-700PA4 15 psi/0,001
- FLUKE-700PA5 30 psi/0,001
- FLUKE-700PA6 100 psi/0,01
- FLUKE-700PV3 -5 psi/0,0001
- FLUKE-700PV4 -15 psi/0,001
- FLUKE-700PD2 ±1 psi/0,0001
- FLUKE-700PD3 ±5 psi/0,0001
- FLUKE-700PD4 ±15 psi/0,001
- FLUKE-700PD5 -15/30 psi/0,001
- FLUKE-700PD6 -15/100 psi/0,01
- FLUKE-700PD7 -15/200 psi/0,01
- FLUKE-700P29 3000 psi/0,1
- FLUKE-700P30 5000 psi/0,1
- FLUKE-700P31 10000 psi/1

Spezifikationen

Allgemeine Spezifikationen

Alle Spezifikationen gelten von +18 °C bis +28 °C, sofern nicht anders vermerkt.

Alle Spezifikationen setzen eine Aufwärmzeit von 5 Minuten voraus.

Die Messwertspezifikationen gelten nur, wenn die Option Glätten eingeschaltet ist. Wenn Glätten ausgeschaltet ist oder wenn der Anzeiger -- waufleuchtet, dann werden die Basisspezifikationen mit 3 multipliziert. Werkhallenspezifikationen sind der zweite Teil der Spezifikationen. Die Messfunktionen Druck, Temperatur und Frequenz sind nur als Werte mit eingeschalteter Option Glätten spezifiziert.

Spezifikationen gelten bis zu 110 % des Bereichs. Folgende Ausnahmen gelten bis zu 100 % des Bereichs: 300 V Gleichstrom, 300 V Wechselstrom, 22 mA Quelle und Simulation, 15 V Gleichstrom Quelle sowie Temperaturmessung und Verwendung als Quelle.

Akkuleistung nutzen, um beste Störspannungsunterdrückung zu erreichen.

Größe (H x B x T)	Höhe = 63,35 mm x Breite = 136,37 mm x Länge = 244,96 mm
Gewicht	1,23 kg (einschließlich Akku)
Anzeige	480 x 272 Grafikpunkte, Flüssigkristallanzeige (LCD), 95 x 54 mm
Strom	Interner Akkusatz: Lithium-Ionen, 7,2 V Gleichstrom, 30 Wh

Umgebungspezifikationen	
Einsatzhöhe	3000 m
Lagerungshöhe	1300 m
Betriebstemperatur	10 bis 50 °C
Lagerungstemperatur	20 bis + 60 °C
Relative Luftfeuchte (Maximal, nicht kondensierend)	90 % bis 35 °C
	75 % bis 40 °C
	45 % his 50 °C

753/754

Bedienungshandbuch

Normen und Zulassungen

Schutzklasse: Verschmutzungsgrad II IP 52

Kriechen und Abstand der doppelten Isolierung...... Per IEC 61010-1

Entwurfsstandards und Einhaltung EN/IEC 61010-1:2010, CAN/CSA C22.2 No. 61010-1-04, ANSI/UL 61010-

1:2004

EMI, RFI, EMC EN 61326-1:2006

Ausführliche Spezifikationen

Spezifikationen, die nach einer Aufwärmzeit von 5 Minuten gelten.

Spezifikationen gelten bis zu 110 % des Messbereichs, mit den folgenden Ausnahmen: 300 V Gleichstrom MEASURE, 300 V Wechselstrom MEASURE, 50 kHz MEASURE und SOURCE, 22 mA SOURCE und Simulation, 15 V Gleichstrom SOURCE sowie Temperatur MEASURE und SOURCE, die bis zu 100 % des Messbereichs gelten.

mV-Messung Gleichstrom

Bereich Auflösung		% Messwert + Werkstatt	
		1 Jahr	2 Jahre
±100.000 mV	0,001 mV	0,02 % + 0,005 mV	0,03 % + 0,005 mV

Eingangsimpedanz: 5 M Ω

Maximale Eingangsspannung: 300 V, IEC 61010 300 V CAT II

Temperaturkoeffizient: (0,001 % des Messwerts + 0,001 % des Messbereichs) / °C (<18 °C oder >28 °C)

Ablehnung normaler Modus: >100 dB bei 50 oder 60 Hz nominell

Gleichspannungsmessung

Bereich Auflösung		% Messwert + Summierglied	
Defeich	Autosung	1 Jahr	2 Jahre
±3,00000 V	0.00001 V	0,02 % + 0,00005 V	0,03 % + 0,00005 V
±30,0000 V	0,0001 V	0,02 % + 0,0005 V	0,03 % + 0,0005 V
±300,00 V	0,01 V	0,05 % + 0,05 V	0,07 % + 0,05 V

Eingangsimpedanz: 4 M Ω

Maximale Eingangsspannung: 300 V, IEC 61010 300 V CAT II

Temperaturkoeffizient: (0,001 % des Messwerts + 0,0002 % des Messbereichs) / °C (<18 °C oder >28 °C)

Ablehnung normaler Modus: >100 dB bei 50 oder 60 Hz nominell

Wechselspannungsmessung

Bereich 40 Hz – 500 Hz	% Messwert + Summierglied		
	1 Jahr	2 Jahre	
3.000 V	0,001 V	0,5 % + 0,002 V	1,0 % + 0,004 V
30,00 V	0,01 V	0,5 % + 0,02 V	1,0 % + 0,04 V
300,0 V	0,1 V	0,5 % + 0,2 V	1,0 % + 0,2 V

Eingangsimpedanz: >4 $\mbox{M}\Omega$ und <100 pF

Eingangskopplung: Wechselstrom

Maximale Eingangsspannung: 300 V, IEC 61010 300 V CAT II

Temperaturkoeffizient: 5 % der spezifizierten Genauigkeit / °C (<18 °C oder > 28 °C).

Die Spezifikationen gelten für 9 % bis 100 % des Spannungsbereichs.

Gleichstrommessung

Bereich	Auflösung	% Messwert + Summierglied	
Dereich	Autosung	1 Jahr	2 Jahre
±30,000 mA	1 μA	0,01 % + 5 μA	0,015 % + 7 μA
±100,00 mA	10 μA	0,01 % + 20 μA	0,015 % + 30 μA

Maximaler Eingang: 110 mA

Maximale Bürdenspannung: 420 mV bei 22 mA

Temperaturkoeffizient: 3 % der spezifizierten Genauigkeit / °C (<18 °C oder > 28 °C).

Keine Sicherung

Ablehnung Normalmodus: 90 dB bei 50 oder 60 Hz nominell und 60 dB bei 1200 Hz und 2200 Hz nominell (HART-Signale)

Widerstandsmessung

Bereich Auflösung	% Messwert +	Source		
Bereich Auflösung		1 Jahr	2 Jahre	Strom
10,000 Ω	0,001 Ω	0,05 % + 0.050 Ω	0,07 % + 0,070 Ω	3 mA
100, 00 Ω	0,01 Ω	0,05 % + 0,05 Ω	0,07 % + 0,07 Ω	1 mA
1,0000 kΩ	0,1 Ω	0,05 % + 0,0005 kΩ	0,07 % + 0,0007 kΩ	500 μΑ
10,000 kΩ	1 Ω	0,10 % + 0,010 kΩ	0,15 % + 0,015 kΩ	50 μA

Spannung offener Stromkreis: 5 V nominell

Temperaturkoeffizient: 3 % der spezifizierten Genauigkeit / °C (<18 °C oder > 28 °C).

Kontinuitätstests

Tonsignal	Widerstand
Dauerton	<25 Ω
Tonpräsenz unbestimmt	25 bis 400 Ω
Kein Ton	>400 Ω

Frequenzmessung

Bereiche	Auflösung	2 Jahre
1,00 Hz bis 110,00 Hz [1]	0,01 Hz	0,05 Hz
110,1 Hz bis 1100,0 Hz	0,1 Hz	0,5 Hz
1,101 kHz bis 11,000 kHz	0,001 kHz	0,005 kHz
11,01 kHz bis 50,00 kHz	0,01 kHz	0,05 kHz

Kopplung: Wechselstrom

Minimalamplitude für Frequenzmessung (Rechteckwelle):

<1 kHz: 300 mV p-p

1 kHz bis 30 kHz: 1,4 mV p-p

>30 kHz: 2,8 V p-p

Maximale Eingangsfrequenz:

<1 kHz: 300 V eff. >1 kHz: 30 V eff.

Eingangsimpedanz: 4 $\text{M}\Omega$

[1] Für Frequenzmessung unterhalb 110,00 Hz gelten die Spezifikationen für Signale mit einer Anstiegsgeschwindigkeit von mehr als 5 V/ms.

±Gleichspannungsausgang

Bereich	Auflösung	% des Ausgangs + Werkhalle	
Dereich	Autosung	1 Jahr	2 Jahre
±100,000 mV	1 μV	0,01 % + 0,005 mV	0,015 % + 0,005 mV
±1,00000 V	10 μV	0,01 % + 0,00005 V	0,015 % + 0,00005 V
±15,0000 V	100 μV	0,01 % + 0,0005 V	0,015 % + 0,0005 V

Maximaler Ausgangsstrom: 10 mA

Temperaturkoeffizient: (0,001 % des Ausgangs + 0,001 % des Messbereichs) / $^{\circ}$ C (<18 $^{\circ}$ C oder >28 $^{\circ}$ C)

+Gleichstromquelle

Bereich/Modus	Auflösung	% des Ausgangs + Werkhalle	
	Autosung	1 Jahr	2 Jahre
0,100 bis 22,000 mA	1 μΑ	0,01 % + 3 μA	0,02 % + 3 μΑ

Temperaturkoeffizient: 3 % der spezifizierten Genauigkeit / °C (<18 °C oder > 28 °C).

Quelle mA Einhaltungsspannung: 18 V maximal

Quelle mA Spannung offener Stromkreis: 30 V maximal

+Gleichstrom simulieren (externer Schleifenstrom)

Bereich/Modus	Auflösung	% des Ausgangs + Werkhalle		
Bereich/Modus	Autosung	1 Jahr	2 Jahre	
0,100 bis 22,000 mA (Stromsenke)	1 μΑ	0,02 % + 7 μA	0,04 % + 7 μΑ	

Simulieren mA Eingangsspannung: 15 bis 50 V Gleichstrom, 300 µA zur Sohle hinzufügen, wenn > 25 V in Schleife vorhanden Temperaturkoeffizient: 3 % der spezifizierten Genauigkeit / °C (<18 °C oder > 28 °C).

Widerstandserzeugung (Quellen)

Bereich	Auflösung	% des Ausgar	% des Ausgangs + Werkhalle			
Dereich	Adilosung	1 Jahr	2 Jahre	Erregungsstrom		
10,000 Ω	0,001 Ω	0,01 % + 0,010 Ω	0,015 % + 0,015 Ω	0,1 mA bis 10 mA		
100,00 Ω	0,01 Ω	0,01 % + 0,02 Ω	0,015 % + 0,03 Ω	0,1 mA bis 10 mA		
1,0000 kΩ	0,1 Ω	0,02 % + 0,0002 kΩ	0,03 % + 0,0003 kΩ	0,01 mA bis 1,0 mA		
10,000 kΩ	1 Ω	0,02 % + 0,003 kΩ	0,03 % + 0,005 kΩ	0,01 mA bis 1,0 mA		
Temperaturkoeffizient: (0,01 % des Ausgangs + 0,02 % des Messbereichs) / °C (<18 °C oder >28 °C)						

Frequenzerzeugung (Quellen)

Bereich	Spezifikation	
Defeich	2 Jahre	
Sinuswelle: 0,1 Hz bis 10,99 Hz	0,01 Hz	
Rechteckwelle: 0,01 Hz bis 10,99 Hz	0,01 Hz	
Sinus- und Rechteckwelle: 11,00 Hz bis 109,99 Hz	0,1 Hz	
Sinus- und Rechteckwelle: 110,0 Hz bis 1099,9 Hz	0,1 Hz	
Sinus- und Rechteckwelle: 1,100 kHz bis 21,999 kHz	0,002 kHz	
Sinus- und Rechteckwelle: 22,000 kHz bis 50,000 kHz	0,005 kHz	

Wellenformen-Wahlmöglichkeiten: Nullsymmetrische Sinuswelle oder positive 50 % Arbeitszyklus-Rechteckwelle

Amplitude Rechteckwelle: 0,1 bis 15 V p-p

Genauigkeit Amplitude Rechteckwelle, 0,01 bis 1 kHz: 1 % p-p Ausgang + 75 mV, 1 kHz bis 50 kHz: 10 % p-p Ausgang + 75 mV

Amplitude Sinuswelle: 0,1 bis 30 V p-p

Genauigkeit Amplitude Sinuswelle, 0,1 bis 1 kHz: 3 % p-p Ausgang + 75 mV, 1 kHz bis 50 kHz: 10 % p-p Ausgang + 75 mV

753/754 Bedienungshandbuch

Temperatur, Thermoelemente

Туре	Barraigh 9C	Mes	sen °C	Quellen °C	
	Bereich °C	1 Jahr	2 Jahre	1 Jahr	2 Jahre
E	-250 bis -200	1,3	2,0	0,6	0,9
	-200 bis -100	0,5	0,8	0,3	0,4
	-100 bis 600	0,3	0,4	0,3	0,4
	600 bis 1000	0,4	0,6	0,2	0,3
N	-200 bis -100	1,0	1,5	0,6	0,9
	-100 bis 900	0,5	0,8	0,5	0,8
	900 bis 1300	0,6	0,9	0,3	0,4
J	-210 bis -100	0,6	0,9	0,3	0,4
	-100 bis 800	0,3	0,4	0,2	0,3
	800 bis 1200	0,5	0,8	0,3	0,3
К	-200 bis -100	0,7	1,0	0,4	0,6
	-100 bis 400	0,3	0,4	0,3	0,4
	400 bis 1200	0,5 0,8		0,3	0,4
	1200 bis 1372	0,7	1,0	0,3	0,4
T	-250 bis -200	1,7	2,5	0,9	1,4
	-200 bis 0	0,6	0,9	0,4	0,6
	0 bis 400	0,3	0,4	0,3	0,4
В	600 bis 800	1,3	2,0	1,0	1,5
	800 bis 1000	1,0	1,5	0,8	1,2
	1000 bis 1820	0,9	1,3	0,8	1,2
R	-20 bis 0	2,3	2,8	1,2	1,8
	0 bis 100	1,5	2,2	1,1	1,7
	100 bis 1767	1,0	1,5	0,9	1,4

Documenting Process CalibratorAusführliche Spezifikationen

Time	Donaich 00	Mes	sen °C	Quellen °C		
Type	Bereich °C	1 Jahr	2 Jahre	1 Jahr	2 Jahre	
S	-20 bis 0	2,3	2,8	1,2	1,8	
	0 bis 200	1,5	2,1	1,1	1,7	
	200 bis 1400	0,9	1,4	0,9	1,4	
	1400 bis 1767	1,1	1,7	1,0	1,5	
С	0 bis 800	0,6	0,9	0,6	0,9	
(W5Re/W26Re)	800 bis 1200	0,8	1,2	0,7	1,0	
	1200 bis 1800	1,1	1,6	0,9	1,4	
	1800 bis 2316	2,0	3,0	1,3	2,0	
L	-200 bis -100	0,6	0,9	0,3	0,4	
	-100 bis 800	0,3	0,4	0,2	0,3	
	800 bis 900	0,5	0,8	0,2	0,3	
U	-200 bis 0	0,6	0,9	0,4	0,6	
	0 bis 600	0,3	0,4	0,3	0,4	
BP	0 bis 1000	1,0	1,5	0,4	0,6	
	1000 bis 2000	1,6	2,4	0,6	0,9	
	2000 bis 2500	2,0	3,0	0,8	1,2	
XK	-200 bis 300	0,2	0,3	0,2	0,5	
	300 bis 800	0,4	0,6	0,3	0,6	

Bedienungshandbuch

Type	Bereich °C		sen °C	Quellen °C	
Туре		1 Jahr	2 Jahre	1 Jahr	2 Jahre

Sensorungenauigkeit nicht berücksichtigt.

Genauigkeit für externe kalte Vergleichsstelle: 0,2 °C für interne Vergleichsstelle addieren

Auflösung: 0,1 °C

Temperaturskala: ITS-90 oder IPTS-68, wählbar (90 ist Standard)

Kompensation: ITS-90 per NIST Monograph 175 für B, R, S, E, J, K, N, T; IPTS-68 per IEC 584-1 für B, R, S, E, J, K, T; IPTS-68 per DIN 43710 für L, U. GOST P 8.585-2001 (Russland) für BP und XK, ASTM E988-96 für C (W5Re/W26Re)

Temperaturkoeffizient: 0,05 °C/ °C (<18 °C oder >28 °C)

0,07 °C/ °C für C-Typ >1800 °C und für BP-Typ >2000 °C

Betriebstemperatur Instrument: 0 bis 50 °C für Thermoelemente der Typen C und BP / -10 bis 50 °C für alle anderen Typen

Eigenschwingungsunterdrückung: > 65 dB bei 50 oder 60 Hz nominell

Temperatur, Widerstandstemperaturfühler

	Temperatur, RTDs Grad oder % des Messwerts [1]						
		ı	Messen °C ^[2]		Quelle	n °C	Zulässiger
Typ (α)	Bereich °C	1 Jahr	2 Jahre	Quellenst rom	1 Jahr	2 Jahre	Erregungsstr om ^[3]
100 Ω	-200 bis 100	0,07 °C	0,14 °C	1 mA	0,05 °C	0,10 °C	0,1 bis 10 mA
Pt(385)	100 bis 800	0,02 % + 0,05 °C	0,04 % + 0,10 °C	TIMA	0,0125 % + 0,04 °C	0,025 % + 0,08 °C	
200 Ω	-200 bis 100	0,07 °C	0,14 °C	500 µA	0,06 °C	0,12 °C	0,1 bis 1 mA
Pt(385)	100 bis 630	0,02 % + 0,05 °C	0,04 % + 0,10 °C	- 300 μΑ	0,017 % + 0,05 °C	0,034 % + 0,10 °C	U, I DIS I IIIA
500 Ω	-200 bis 100	0,07 °C	0,14 °C	250 μA	0,06 °C	0,12 °C	0.1 bis 1 mA
Pt(385)	100 bis 630	0,02 % + 0,05 °C	0,04 % + 0,10 °C	250 μΑ	0,017 % + 0,05 °C	0,034 % + 0,10 °C	U, I DIS I IIIA
1000 Ω	-200 bis 100	0,07 °C	0,14 °C	150 µA	0,06 °C	0,12 °C	0.1 bis 1 mA
Pt(385)	100 bis 630	0,02 % + 0,05 °C	0,04 % + 0,10 °C		0,017 % + 0,05 °C	0,034 % + 0,10 °C	U, I DIS I IIIA

	Temperatur, RTDs Grad oder % des Messwerts [1]						
100 Ω	-200 bis 100	0,07 °C	0,14 °C	1 mA	0,05 °C	0,10 °C	0,1 bis 10 mA
Pt(3916)	100 bis 630	0,02 % + 0,05 °C	0,04 % + 0,10 °C	TIIIA	0.0125 % + 0.04 °C	0,025 % + 0,08 °C	U, I DIS TUTITA
100 Ω	-200 bis 100	0,08 °C	0,16 °C	1 mA	0,05 °C	0,10 °C	0.1 bis 10 mA
Pt(3926)	100 bis 630	0,02 % + 0,06 °C	0,04 % + 0,12 °C	TIIIA	0.0125 % + 0.04 °C	0,025 % + 0,08 °C	O, I DIS TO IIIA
10 Ω Cu(427)	-100 bis 260	0,2 °C	0,4 °C	3 mA	0,2 °C	0,4 °C	1 bis 10 mA
120 Ω Ni(672)	-80 bis 260	0,1 °C	0,2 °C	1 mA	0,04 °C	0,08 °C	0,1 bis 10 mA

[1] Spezifikationen gelten bis k=3
Sensorungenauigkeit nicht berücksichtigt

[2] Für Zwei- und Dreileiter-RTD-Messungen: 0,4 °C zu den spezifizierten Werten addieren.°

Auflösung: 0,01 °C mit Ausnahme von 0,1 °C bei 10 Ω Cu(427)

Temperaturkoeffizient: 0,01 °C/°C für MEASURE, 0,02 °C/°C (<18 °C oder >28 °C) für SOURCE

 $\hbox{[3]} \quad \hbox{Unterst\"{u}tzt gepulste Transmitter und SPSs mit Impulswiederholzeiten von 1 ms}$

RTD-Referenz:

Pt(385): IEC 60751, 2008 Pt(3916): JIS C 1604, 1981

Pt(3926), Cu(427), Ni(672): Minco Application Aid #18

Schleifenstrom

Leerlauf	Belasteter Stromkreis			
26 V ±10 %	18 V Minimum bei 22 mA			
Kurzschlussfest bis 25 mA				
Ausgangswiderstand: 250 Ω nominal				

753/754

Bedienungshandbuch