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Abstract

There is a need today to maintain dc voltage at an uncertainty of 0.3 ppm or better.  We
believe that most standards laboratories can do this without using an expensive Josephson
Junction Array System.  DC Reference Standards commonly in use today are capable of
this performance providing that they are properly calibrated and that the effects of
temperature, pressure and seasons are taken into account.  This paper develops supporting
uncertainty equations and applies them to useful scenarios.

Introduction

High end multifunction calibrators and digital voltmeters today require calibration
uncertainties that only primary standards laboratories maintained in recent history.
Uncertainties of 1.0 to 1.5 ppm are required for 10 VDC at the time of test.  These
standards, in turn, must be supported by reference standards having a NIST traceable
uncertainty of 0.3 to 0.5 ppm if a reasonable Test Uncertainty Ratio (TUR) is to be
maintained.

It is possible today to maintain 10 VDC at  0.3 ppm or better in most standards
laboratories without a Josephson Junction Array.  However, care must be taken to
minimize the effects of certain stimuli that usually contributes negligible error and,
therefore, is overlooked.  This paper examines some of those effects and recommends
how they can be controlled so as to achieve 0.3 ppm performance or better.

Classical Approach

The classical approach for estimating the uncertainty of the dc voltage standard is simply
to combine its stability, as specified by the manufacturer, with the uncertainty of the
calibration as follows:

tot calU stab U= +2 2
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Modern zener type dc voltage standards typically have a stability of 2 ppm per year.
Assuming this value and a calibration uncertainty of 0.1 ppm, the total uncertainty can be
calculated as a function of time.  Figure 1 gives the total uncertainty for a single cell and
triple cell dc voltage standard (DCVS) as a function of its calibration cycle in months.  It
shows that the 0.3 ppm goal can be approached for the singe cell DCVS only if it is
calibrated with a  Josephson Junction Array System every two months or less.  This may

       Figure 1.  Total Uncertainty for DCVS Array Voltage Standard

or may not be practical depending on the turn-around time of the calibration supplier.  If
the number of independent cells is increased to three, the required calibration cycle time
to maintain 0.3 ppm  is increased to 3 months.   Although this may be workable, it is
inefficient and costly,  requiring a total of 12 calibrations per year (4 on each cell).

Characterized Performance

The largest component of uncertainty in the above calculations is the stability of the
standard.  You might postulate that the typical performance for a standard must be better
than its specifications since the manufacturer must achieve a high yield in his
manufacturing process.  This in fact is true.  Therefore, if the standard is characterized
using historical calibration data, its actual performance will usually be better than its
stability specifications.

A linear regression model is frequently used for this characterization.  Historical
calibration data is used to calculate the parameters of the regression line and the
components of the estimated regression uncertainty.  The output voltage of the standard
and its uncertainty is given by the following equation:

stdV a bX U= + ± (1)

where a  is the regression offset term
b is the regression slope (drift rate)
X represents time or date
U is the total uncertainty of the voltage standard
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and U t eff reg calu u= − +( , )1
2 2α ν (2)

where t is the t statistic
1− α  is the confidence factor for t

effν  is the effective degrees of freedom for U as calculated by the 

        Welch-Satterthwaite formula (1)

calu  is the standard uncertainty of the calibration (1 sigma)

regu  is the standard error of the regression (1 sigma)

regu  is given by the following well known equation for the uncertainty of a regression
line  (2).
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where x   is the mean of the regression input time data
n  is the number of regression data points

regs  is the standard error for the regression ( MSE )

An alternate form for equation 3 that is easier to compute is as follows:
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where xs is the standard deviation of the time data (x).

Substituting equation 4 into equation 2 gives the following expression for the total
uncertainty of a characterized single cell DCVS as a function of time (X):
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Equation 5 is used to estimate uncertainty at historical dates of interest,  especially the
current time.  It also is used by some to predict the uncertainty of future performance.
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Equation 5, of  course, requires historical data on which to compute the various
parameters.  In its present form, it is difficult to use for planning purposes such as for
estimating uncertainty performance assuming typical values for the parameters.

Equation 5 can be further simplified by considering the special case where historical data

is collected in equally spaced time increments.  In that case, xs  can be approximated by

xs
a≈
3

   where 2a is the time period of the historical data

Substituting this value for 
xs  into equation 5 gives:
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Equation 6 expresses the total uncertainty of a characterized single cell DCVS as a
function of time (x) for the special case of n equally spaced calibration periods in a time
period of 2a;   that is the period ( )x a−  to ( )x a+ .    It is well suited for making
uncertainty estimates based on typical DCVS performance rather than actual data.

For example, lets determine the time x for the next scheduled calibration and calculate the
expected total uncertainty at the time just prior to recalibration.  That value is the
uncertainty maintained by the DCVS.

In the above model,  the last calibration occurred at X x a= + .  The next calibration is

scheduled for x x a
a

n
= + + 2  (since we have n calibrations in a 2a time period).

Substituting this last value of x into equation 6 gives the estimated uncertainty at which
the standard is maintained.

Equation 7 estimates the uncertainty at which a single cell DCVS is maintained as a
function of the total number of calibration points n, the standard error of the
corresponding regression (

regs ) and the standard uncertainty of the supporting calibrations

(
calu ).  It is useful for estimating the calibration interval required to maintain the desired

uncertainty.
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The above analysis can be expanded to allow a group of N DCVSs.  For N standards
equation 2 becomes

U t eff
N

regN
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Equation 8 is equivalent to equation 6 for multiple cell DCVSs.  It is used to estimate the
uncertainty of multi cell DCVSs at historical dates of interest,  especially the current time.
It also is used by some to predict the uncertainty of future performance.

For the special case of N independent DCVSs, each with n equally spaced calibrations in
a time period of 2a,  equation 8 simplifies to the following:
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where 
pooled regs _

2
  is the pooled Standard Error for the N regressions.

K  is the coverage factor

In this case,  
pooled regs _

2
 is the average Standard Error for the N regressions since all of the

regressions have the same number of data points n.  Coverage factor K  replaced the t
statistic in equation 10 since the degrees of freedom with multiple cells is relatively high.
K =2 implies a 0.95 Confidence Factor.

Equation 10 is the multiple cell equivalent to equation 7.  It is well suited for making
uncertainty estimates on N independent DCVSs based on typical cell performance rather
than actual data.

Now lets estimate the uncertainty of a single and multiple cell DCVS that have been
characterized with a linear regression.

Assume a single cell DCVS will be calibrated at n regular intervals with an uncertainty of
0.1 ppm (using a Josephson Junction Array system) with 40 degrees of freedom. Further
assume that it is characterized with a linear regression line having a regression standard
error 

regs  = 0.14 ppm (a typical value for data collected over two years or more).

Equation 7 or 10 can now be used to calculate the total uncertainty of a single cell or
multiple cell DCVS as a function of the number of total calibrations n.
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The resulting computations for the uncertainties U  maintained by a single cell and a
triple cell DCVS are given in Figure 2.  For a single cell,  this chart shows that 7
calibrations are required to maintain 0.3 ppm or better.  This can be accomplished by
calibrating every 6 months for at least 3 1/2 years or any other combination that totals
seven calibrations.  If  the DCVS consists of a group of three cells, only 4 calibrations are

     Figure 2.  Required Number of Calibrations for a Given Uncertainty

required to maintain 0.3 ppm or better.  This can be done by calibrating the group twice a
year for two years.

After the desired uncertainty has been achieved, the next calibration must be done at its
normal calibration interval (2a/n).  After that, however, the calibration intervals can be
gradually increased since the total number n is increasing.  Equation 5 (for a single cell)
or 8 (for a multiple cell) can be used to  estimate when that calibration is required.

One might observe that 0.3 ppm can be obtained by calibrating a group of three cells for 4
periods, or a single cell for 7 periods.  The former requires 12 calibrations and the later
only 7.  This suggests that it is cheaper to use only a single cell standard.  Actually, a
single cell reference may not be sufficient for several reasons.

The analysis presented so far in this paper is developed around a simplified model.  The
output voltage of the dc standard is assumed to be a function only of time provided it is
operated within a specified temperature window.   This simplified model may be
sufficient when performance of a few ppm is involved, but it loses its appropriateness
when dealing with fractional ppm.  The following section will expand the scope of the
model for the DCVS and discuss each component.

Expanded Model

In order to be suitable for fractional ppm performance, the model for a dc reference
standard should include the effects of nonlinear drift, temperature, pressure and seasons.
Whereas each of these components typically contributes little with regard to the
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manufacture’s specification,  they can have a significant effect on performance of 1 ppm
or better.  We will examine each of these effects in the following paragraphs.

      Figure 3.  Linear Regression of Non Linear Data

Non linearity with time:   Many solid state dc reference standards drift nearly linearly
over long time periods.  The analysis presented earlier in this paper relates to linear drift.
The drift rate on some, however, are nonlinear, especially if the observed periods are
longer than 2 or 3 years. An example of this is given in Figure 3.  

The relatively poor fit of the linear regression is indicated by a relatively high value for
the regression standard error Sreg (0.26 ppm in this case).  Earlier analysis in this paper
assumed a Sreg of 0.14 ppm.

Sometimes an improvement can be made in the fit and uncertainty performance simply by
omitting one of more of the earliest data points.  This reduces Sreg which reduces
uncertainty; however, reducing n tends to increase uncertainty.  Equations 5 through 10

show that uncertainty is proportional to the factor regs
n

.  Therefore,  when early data

points are removed,  this term should be tracked and minimized.
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For example, lets attempt to improve the fit and reduce the uncertainty of the regression
given in Figure 3 by removing one of more of its early data points.  Figure 4 shows how

regs  and regs
n

 vary with the number of remaining data points.  Both parameters are

   Figure 4.  Uncertainty Parameter Variation     Figure 5.  Effect of Truncated Data

minimized when the first two data points are removed.  Figure 5 shows the resulting

representation of the data  The net effect is that regs  is reduced from 0.24 ppm to 0.08
ppm and the noise parameter is reduced from 0.094 ppm to 0.036 ppm.

Another method for coping with nonlinearity is to linearize the relationship between the
data and time by transforming the time variable x.  Generally, it is possible to linearize by
transforming one or both of the variables, however,  if the expressions for uncertainty are
to remain valid, only the time variable can be transformed (3).

The type of transformation depends on the shape of the data.  For a nonlinearity that tends
to decrease the magnitude of the data with time, as in Figure 3, transforms including
x x’= ,  x x’ log( )= ,  or x n’= 1  are recommended in the literature (4).  However,  we have

found that the transformations  x x d’ log( )= − , and x x d’= −  are the most useful for
nonlinearities commonly encountered in dc voltage standards.  The constant d is usually a
number corresponding to a date less than the earliest data by several months.

Each of the above transformations was applied to the non linear data of Figure 3.  The

following tabulates the resulting values for the important uncertainty parameters regs  and

regs
n
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         Transformation       regS
   

regS
n

none (linear with 7 data
pts)

0.25 ppm 0.094 ppm

truncated linear 5 data pts 0.08 0.036
x’=log(x) 0.23 0.087
x’=sqrt(x) 0.24 0.09
x’=log(x-30500) 0.037 0.014
x’=sqrt(x-32600) 0.036 0.0137

Table 1.  Effect of Variable Transformation on Uncertainty Parameters

Table 1 shows that for the non linear data given in Figure 3,  the transformations

x x d’ log( )= −  and x x d’= −  both reduce 
regs  from 0.25 to 0.037 and regs

n
 from 0.094 ppm

to 0.014 ppm. The uncertainty of the transformed regression is improved over that of the
normal linear regression by a factor of nearly 7.  That is well worth the added complexity
of the uncertainty calculations.

Temperature Effects:  Modern DCVSs are designed to operate across a wide temperature
range without degrading their performance.   Typically, these units operate at 23 5± °C

within their specified performances.  In this case, however, we are interested in changes
significantly smaller than the usual stability specifications.  Therefore,  it is necessary to
consider the effects of temperature variations around the calibration temperature.

If the temperature coefficient is specified as TC ppm C/° , and the observed temperature
differs from the temperature at which the DCVS was calibrated at by δ °C , then the
change in the DCVS output voltage is bounded by the product TC *δ .  Actually, TC  is a
random variable that can reasonably be modeled as having a normal distribution with a

standard deviation 
tcs

TC=
σ

 where σ = 2 if the DCVS is specified at a 95% Confidence

Factor (CF) or σ = 2 6.  if specified at a 99% CF.  This gives the standard uncertainty for
temperature effect contributions as

TCu
TC=
σ

δ (11)

The uncertainty term given by equation 11 can be minimized simply by minimizing δ;
that is, keep the temperature of the DCVS near the temperature at which it is calibrated.
If the temperature difference is significant, then the uncertainty term of equation 11
should be applied.

Pressure/Altitude Effects:  Sensitivity to atmospheric pressure is not a new phenomena
for reference standards.  This effect is well known for Thomas type 1 ohm resistors, for
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example.  It may come as a surprise, however, that some zener type DCVSs also exhibit
sensitivity to pressure.

Measurements made on a limited sample of DCVSs show pressure sensitivities  ranging
from near zero to approximately -0.06 ppm/1000 foot altitude.  The data collected is too
limited to quantify the distribution of units within these bounds.  Units seem to be
grouped at -0.06,  -0.03  and near 0  ppm/1000 foot altitude.

The standard uncertainty for pressure sensitivity can be modeled as a pressure sensitivity
times the altitude.

pu ph=   (12)

where p is the pressure sensitivity in ppm/1000 ft
and h  is the height (altitude) in 1000s of feet

The effects of altitude sensitivity can be minimized or eliminated by at least two methods.
The classical method is to characterize the standard and apply a correction term.  This
reduces the uncertainty of the pressure effect to the uncertainty of the correction term.
The uncertainty term given in equation 12 then becomes the standard uncertainty of the
correction term rather than that for the larger pressure sensitivity.

 Another approach is to utilize an on site calibration service (MAP).  In this case, the
calibration supplier is responsible for compensating for the pressure sensitivity of his
standard.  This method essentially eliminates pressure uncertainty.

Seasonality:    Seasonality refers to a cyclic variation in the output of the DCVS that
repeats annually.   Figure 8 is a representation of such a unit.

Figure 8.  Example of a DCVS with Seasonal Variations
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The above example shows a seasonal effect of approximately 0.2 ppm peak.  Many units
show little or no effect.  Supporting data is very limited since the DCVS must be
monitored continuously with a high precision measurement system; therefore, it is
difficult to estimate the distribution of this effect.  Based on the limited data we have
collected, I believe that it can be conservatively estimated by a standard uncertainty of
0.12 ppm peak. That is

su ≈ 0 12.  ppm (13)

where  
su  is the estimated standard uncertainty (1 sigma) for the seasonal effect

The cause for this effect has not been established; however, the best hypotheses is that
water vapor in the environment causes leakage across critical internal elements.  Most
units exhibiting this phenomena reside in laboratories with poor or no humidity control.

Seasonal effects can cause an understatement of your DCVS uncertainty if it is
unaccounted for.  For example, many labs calibrate their standards at about the same time
every year.  Since the seasonal effect is synchronous with  the calendar,  the calibration
will occur at the same phase of this effect every year.  Its contribution to the performance
of the DCVS may never be observed or accounted for.  If the calibration is done
asynchrously,  then over a period of time all phases of this effect will be observed.  This
will automatically be reflected as in increased value in the standard error of the regression

line regs .

Multiple standards can be helpful for detecting and quantifying seasonal effects.

Averaging n  standards will reduce the seasonal effect by approximately 1

n
 since their

magnitude and polarity are not highly correlated.  Therefore, if each unit is compared to
the group average, its seasonality can be observed and its magnitude estimated.  This will
allow the user to eliminate poor performers or to improve the estimation of the standard

error for su  given by equation 13.

Expanded Model:  Earlier in this paper, equations 5-10 were developed for total DCVS
uncertainty using a simple model reflecting only the effects of time.  All other effects
were assumed to be negligibly small.  These equations now will be expanded to include
the uncertainty terms developed in this section for temperature, pressure, and seasonal
effects.

When the uncertainty terms for the expanded effects are combined with equation 5, it
becomes the following:
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Equation 14 is an improved model for the total uncertainty of a single DCVS.  It can be
used when historical data is available for the unit. The factor t eff( , )1− α ν  in equation 5 was
changed to coverage factor K since the effective degrees of freedom in the improved
equation will usually result in K being near 2 for a 0.95 confidence level or near 2.6 for a
0.99 confidence level.

Similarly, the approximation for a single DCVS given by equation 7 becomes:
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Equation 15 can be used to estimate total uncertainty when actual data has not been
collected.  It assumes n equally spaced calibrations.

The uncertainty of a group of N single cell DCVSs as given by equation 8,  changes to the
following when the expanded uncertainty contributors are included:

U K
N N N

pooled reg
cal

pooled TC
pooled p

pooled su u u u u= + + + +_ _
_

_

2
2

2
2

2

(16)

where 
pooled yu _

2
 refers to the pooled value of 

yu
2

Each standard uncertainty squared term was divided by N  since the terms are assumed to
be independent.  This is not the case for the pressure term, however, since the pressure
sensitivity for many units will be similar.  Therefore, the pressure sensitivity will not be
reduced with multiple units.

Equation 16 can be used to calculate the total uncertainty for a N-cell DCVS when
historical data is available.

Similarly, equation 10 expands to the following:
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This equation is an approximation for multiple (N) units for which n equally spaced
historical data are assumed.
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Examples

We will illustrate the applications of the above uncertainty equations with two scenarios
as follows:

Scenario 1:  A laboratory has a need for maintaining 10 VDC at an uncertainty of ± 0.3
ppm with a 95% confidence level.  Its metrologist is planning on utilizing 3 zener type
standards with a TC of ≤ 0.05 ppm/ °C and pressure sensitivity of ≤0.03 ppm/1000 ft.  He
understands these units typically have a regression standard error 

regs ppm≤ 0 14. . The

laboratory is located at an elevation of 5000 feet.  Its environment is maintained at 23±3 °
C.  He plans to send his units out for calibration at an uncertainty of ± 0.1 ppm in a lab
maintained at 23±0.6°C.  Can 0.3 ppm be maintained?  How many calibrations are
required?

Equation 17 is relevant for this scenario.  N=3,  regs ppm≤ 0 14. ,  and calu = 0 1. .  TCu  can be
calculated from equation 8 as follows:

TCu
TC=
σ

δ    =
0 05

2
3

.
( )=0.075 ppm

where δ is set at 3 since the laboratory will function across the full temperature
range 23±3 °

Pressure standard uncertainty at 5000 feet is calculated from equation 12

pu = 0 03 5. *  ppm =0.15 ppm

Seasonal effects are unknown, therefore, we will use the estimation of equation 10.

su ppm≈ 0 12.

At the 95% confidence level, the coverage factor K=2.

Now inserting all the above values into equation 17 gives the following estimation:

 0392.02)
2

1(31
0065.0

2 +




 ++≈

nn
U  ppm (18)

Equation 18 is plotted in Figure 9 for several values of n.  In this case, the total
uncertainty, although low, does not approach the desired 0.3 ppm level due to the
relatively large contributions of temperature,  pressure and seasonal effects.
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         Figure 9.  Uncertainty for Scenario 1

Scenario 2:  This  scenario is the same as Scenario 1 except let the calibration be an on-
site 0.1 ppm MAP. Also assume that  intercomparison data is available on the three cells

which show that one cell has a standard seasonal uncertainty su ppm≈ 0 12. .

In this case there is no pressure effect since MAP’s reference cells have negligible
pressure sensitivity.  Also, since only one of the three cells show a seasonal effect of 0.12

ppm, 
pooled pu _

.
2

0 0048= .  Inserting these values into equation 17 gives:
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A plot of U versus the number of equally spaced calibrations (n) is given in Figure 10.  It
shows that the 0.3 ppm uncertainty goal can be reached after 5 or more equally spaced
calibrations.  If data is collected over a two year period, a calibration is required every 5
months.  A calibration every 7 months is required if collected over a three year period.

   Figure 10.  Uncertainty for Scenario 2
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Conclusions

This paper describes how to establish and maintain dc reference standards in your
laboratory at an uncertainty of 0.3 ppm or better.  It requires observing and minimizing
the effects of terms often disregarded in uncertainty budgets.  These include nonlinear,
seasonal, and pressure/altitude effects.  The use of multiple standards is suggested to
reduce random errors, temperature sensitivity, and to detect and bound any seasonal
effect.

Calibration of the standards can best be done utilizing a commercial MAP-type on-site
calibration service.  Calibration uncertainties of  0.1 ppm is the norm for services using
Josephson Junction Array Systems. On-site calibration also eliminates system down time,
shipping effects, and pressure sensitivity error  since the laboratory’s dc reference
standards never leave their environment.

Examples discussed in this paper show 5 or more equally spaced calibrations are required
on three or more DCVSs to achieve and maintain 0.3 ppm uncertainty.  If this data is
collected over a three year period, calibrations are required every 7 months.  After 6
calibrations have been completed,  it is may be possible to increase the calibration period
and still maintain the uncertainty goal.  Equations 14 or 16 can be used to calculate the
next required date of calibration.

This analysis is based on practical values and reasonable assumptions.  We believe that
most laboratories can realize 10 VDC at ± 0.3 ppm uncertainty or better without the
complexity and cost of operating and maintaining a J J Array.
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